Loading…
Strong Facet Effects on Interfacial Charge Transfer Revealed through the Examination of Photocatalytic Activities of Various Cu2O–ZnO Heterostructures
Confirming the photocatalytic inactivity of Cu2O nanocubes through the formation of Au‐decorated–Cu2O heterostructures, spiky ZnO nanostructures are grown on Cu2O cubes, octahedra, and rhombic dodecahedra to demonstrate that charge transfer across semiconductor heterojunctions is also strongly facet...
Saved in:
Published in: | Advanced functional materials 2017-03, Vol.27 (9), p.n/a |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Confirming the photocatalytic inactivity of Cu2O nanocubes through the formation of Au‐decorated–Cu2O heterostructures, spiky ZnO nanostructures are grown on Cu2O cubes, octahedra, and rhombic dodecahedra to demonstrate that charge transfer across semiconductor heterojunctions is also strongly facet dependent. Unintended CuO formation in the growth of ZnO on perfect Cu2O cubes makes them slightly active toward methyl orange photodegradation. Under optimal ZnO growth conditions without CuO presence, Cu2O cubes remain inactive, while rhombic dodecahedra show an enhanced photocatalytic activity due to better charge transfer according to normal Cu2O–ZnO band alignment. Surprisingly, photocatalytically active Cu2O octahedra become inactive after ZnO deposition. An extensive interfacial microscopic examination reveals preferential formation of the ZnO (101) planes on the {111} surfaces of Cu2O octahedra, while different ZnO lattice planes are observed to deposit on Cu2O cubes and rhombic dodecahedra. The photocatalytic inactivity of ZnO‐decorated Cu2O octahedra is explained in terms of an unfavorable band alignment arising from an unusual degree of band bending for the ZnO {101} face relative to the band energy of the Cu2O {111} surface. The efficiency of charge transfer across semiconductor heterojunctions strongly depends on the band edge energies of the contacting planes.
Formation of Cu2O–ZnO heterostructures can enhance or completely suppress photoinduced charge carrier transfer depending on the contacting facets or planes. Simple band alignment analysis of semiconductor heterojunctions without consideration of facet effects is insufficient in predicting photocatalytic behaviors. The photocatalytic activity of Cu2O octahedra is lost after preferential growth of (101) planes of ZnO. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.201604635 |