Loading…
Left-symmetric algebras of derivations of free algebras
A structure of a left-symmetric algebra on the set of all derivations of a free algebra is introduced such that its commutator algebra becomes the usual Lie algebra of derivations. Left and right nilpotent elements of left-symmetric algebras of derivations are studied. Simple left-symmetric algebras...
Saved in:
Published in: | Communications in algebra 2017-07, Vol.45 (7), p.2809-2820 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A structure of a left-symmetric algebra on the set of all derivations of a free algebra is introduced such that its commutator algebra becomes the usual Lie algebra of derivations. Left and right nilpotent elements of left-symmetric algebras of derivations are studied. Simple left-symmetric algebras of derivations and Novikov algebras of derivations are described. It is also proved that the positive part of the left-symmetric algebra of derivations of a free nonassociative symmetric m-ary algebra in one free variable is generated by one derivation and some right nilpotent derivations are described. |
---|---|
ISSN: | 0092-7872 1532-4125 |
DOI: | 10.1080/00927872.2016.1233206 |