Loading…
On the Interpretation of Near-Critical Gas–Liquid Heat Capacities
This comment is in response to a comment by Sengers and Anisimov on the article “Gibbs density surface of fluid argon” that contradicts prevailing theory. It has not “been established experimentally that the thermodynamic properties of fluids satisfy scaling laws with universal critical exponents as...
Saved in:
Published in: | International journal of thermophysics 2017-09, Vol.38 (9), p.1-7, Article 139 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This comment is in response to a comment by Sengers and Anisimov on the article “Gibbs density surface of fluid argon” that contradicts prevailing theory. It has not “been established experimentally that the thermodynamic properties of fluids satisfy scaling laws with universal critical exponents asymptotically close to a single critical point of the vapor–liquid phase transition.” Here we explain why an apparent divergence of
C
v
, in historical experimental “evidence,” is based upon a misinterpretation of near-critical gas–liquid heat capacity measurements in the two-phase coexistence region. The conclusion that there is no “singular critical point” on Gibbs density surface still stands. |
---|---|
ISSN: | 0195-928X 1572-9567 |
DOI: | 10.1007/s10765-017-2277-8 |