Loading…

Usage of Existing Meteorological Data Networks for Parameterized Road Ice Formation Modeling

A road ice prediction model was developed on the basis of existing data networks with an objective of providing a computationally efficient method of road ice forecasting. Icing risk was separated into three distinct road ice formation mechanisms: hoarfrost, freezing fog, and frozen precipitation. H...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied meteorology and climatology 2017-07, Vol.56 (7), p.1959
Main Authors: Toms, Benjamin A, Basara, Jeffrey B, Yang, Hong
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A road ice prediction model was developed on the basis of existing data networks with an objective of providing a computationally efficient method of road ice forecasting. Icing risk was separated into three distinct road ice formation mechanisms: hoarfrost, freezing fog, and frozen precipitation. Hoarfrost parameterizations were mostly gathered as presented in previous literature, with modifications incorporated to account for diffusional ice crystal growth-rate complexity. Freezing-fog parameterizations were based on previous fog typological analyses under the assumption that fog formation mechanisms are similar in above- and subfreezing temperatures. Frozen-precipitation parameterizations were primarily unique to the developed model but were also partially based on previous research. Diagnostic analyses use a synthesis of Automated Surface Observing System (ASOS), Automated Weather Observing System (AWOS), and Oklahoma Mesonet data. Prognostic analyses utilize the National Digital Forecast Database (NDFD), a 2.5-km gridded database of forecast meteorological variables output from National Weather Service Weather Forecast Offices. A frequency analysis was performed using the diagnostic parameterizations to determine general road icing risk across the state of Oklahoma. The frequency analyses aligned well with expected temporal maxima and confirmed the viability of the developed parameterizations. Further, a fog typological analysis showed the implemented freezing-fog-formation parameterizations to capture 89% of fog events. These results suggest that the developed model, identified as the Road-Ice Model (RIM), may be implemented as a robust option for analyzing the potential for road ice development based on the background meteorological environment.
ISSN:1558-8424
1558-8432
DOI:10.1175/JAMC-D-16-0199.1">