Loading…
Mixed Wavelet Leaders Multifractal Formalism in a Product of Critical Besov Spaces
In this paper, we will prove (resp. study) the Baire generic validity of the upper-Hölder (resp. iso-Hölder) mixed wavelet leaders multifractal formalism on a product of two critical Besov spaces B t 1 m t 1 , q 1 ( R m ) × B t 2 m t 2 , q 2 ( R m ) , for t 1 , t 2 > 0 , q 1 ≤ 1 and q 2 ≤ 1 . Con...
Saved in:
Published in: | Mediterranean journal of mathematics 2017-08, Vol.14 (4), p.1-20, Article 176 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we will prove (resp. study) the Baire generic validity of the upper-Hölder (resp. iso-Hölder) mixed wavelet leaders multifractal formalism on a product of two critical Besov spaces
B
t
1
m
t
1
,
q
1
(
R
m
)
×
B
t
2
m
t
2
,
q
2
(
R
m
)
, for
t
1
,
t
2
>
0
,
q
1
≤
1
and
q
2
≤
1
. Contrary to product spaces
B
t
1
s
1
,
∞
(
R
m
)
×
B
t
2
s
2
,
∞
(
R
m
)
with
s
1
>
m
t
1
and
s
2
>
m
t
2
(Ben Slimane in Mediterr J Math, 13(4):1513–1533,
2016
) and
(
B
t
1
s
1
,
∞
(
R
m
)
∩
C
γ
1
(
R
m
)
)
×
(
B
t
2
s
2
,
∞
(
R
m
)
∩
C
γ
2
(
R
m
)
with
0
<
γ
1
<
s
1
<
m
t
1
and
0
<
γ
2
<
s
2
<
m
t
2
(Ben Abid et al. in Mediterr J Math, 13(6):5093–5118,
2016
), all pairs of functions in the obtained generic set are not uniform Hölder. Nevertheless, the characterization of the upper bound of the Hölder exponent by decay conditions of local wavelet leaders suffices for our study. |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-017-0964-0 |