Loading…

Mixed Wavelet Leaders Multifractal Formalism in a Product of Critical Besov Spaces

In this paper, we will prove (resp. study) the Baire generic validity of the upper-Hölder (resp. iso-Hölder) mixed wavelet leaders multifractal formalism on a product of two critical Besov spaces B t 1 m t 1 , q 1 ( R m ) × B t 2 m t 2 , q 2 ( R m ) , for t 1 , t 2 > 0 , q 1 ≤ 1 and q 2 ≤ 1 . Con...

Full description

Saved in:
Bibliographic Details
Published in:Mediterranean journal of mathematics 2017-08, Vol.14 (4), p.1-20, Article 176
Main Authors: Ben Abid, Moez, Ben Slimane, Mourad, Ben Omrane, Ines, Halouani, Borhen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we will prove (resp. study) the Baire generic validity of the upper-Hölder (resp. iso-Hölder) mixed wavelet leaders multifractal formalism on a product of two critical Besov spaces B t 1 m t 1 , q 1 ( R m ) × B t 2 m t 2 , q 2 ( R m ) , for t 1 , t 2 > 0 , q 1 ≤ 1 and q 2 ≤ 1 . Contrary to product spaces B t 1 s 1 , ∞ ( R m ) × B t 2 s 2 , ∞ ( R m ) with s 1 > m t 1 and s 2 > m t 2 (Ben Slimane in Mediterr J Math, 13(4):1513–1533, 2016 ) and ( B t 1 s 1 , ∞ ( R m ) ∩ C γ 1 ( R m ) ) × ( B t 2 s 2 , ∞ ( R m ) ∩ C γ 2 ( R m ) with 0 < γ 1 < s 1 < m t 1 and 0 < γ 2 < s 2 < m t 2 (Ben Abid et al. in Mediterr J Math, 13(6):5093–5118, 2016 ), all pairs of functions in the obtained generic set are not uniform Hölder. Nevertheless, the characterization of the upper bound of the Hölder exponent by decay conditions of local wavelet leaders suffices for our study.
ISSN:1660-5446
1660-5454
DOI:10.1007/s00009-017-0964-0