Loading…

RELATIVE HILBERT CO-EFFICIENTS

Let (A, ${\mathfrak{m}$ ) be a Cohen–Macaulay local ring of dimension d and let I ⊆ J be two ${\mathfrak{m}$ -primary ideals with I a reduction of J. For i = 0,. . .,d, let e i J (A) (e i I (A)) be the ith Hilbert coefficient of J (I), respectively. We call the number c i (I, J) = e i J (A) − e i I...

Full description

Saved in:
Bibliographic Details
Published in:Glasgow mathematical journal 2017-09, Vol.59 (3), p.729-741
Main Authors: MAFI, AMIR, PUTHENPURAKAL, TONY J., REDDY, RAKESH B. T., SAREMI, HERO
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let (A, ${\mathfrak{m}$ ) be a Cohen–Macaulay local ring of dimension d and let I ⊆ J be two ${\mathfrak{m}$ -primary ideals with I a reduction of J. For i = 0,. . .,d, let e i J (A) (e i I (A)) be the ith Hilbert coefficient of J (I), respectively. We call the number c i (I, J) = e i J (A) − e i I (A) the ith relative Hilbert coefficient of J with respect to I. If G I (A) is Cohen–Macaulay, then c i (I, J) satisfy various constraints. We also show that vanishing of some c i (I, J) has strong implications on depth G J n (A) for n ≫ 0.
ISSN:0017-0895
1469-509X
DOI:10.1017/S0017089516000525