Loading…
Additive Preservers of Drazin Invertible Operators with Bounded Index
Let B(X) be the algebra of all bounded linear operators on an infinite-dimensional complex or real Banach space X. Given an integer n 〉 1, we show that an additive surjective map Ф on B(X) preserves Drazin invertible operators of index non-greater than n in both directions if and only if Ф is either...
Saved in:
Published in: | Acta mathematica Sinica. English series 2017-09, Vol.33 (9), p.1225-1241 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let B(X) be the algebra of all bounded linear operators on an infinite-dimensional complex or real Banach space X. Given an integer n 〉 1, we show that an additive surjective map Ф on B(X) preserves Drazin invertible operators of index non-greater than n in both directions if and only if Ф is either of the form Ф(T) = aATA-1 or of the form Ф(T) = aBT*B-1 where a is a non-zero scalar, A : X → X and B : X* → X are two bounded invertible linear or conjugate linear operators. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-017-6534-3 |