Loading…

Catalytic transfer hydrogenation of butyl levulinate to γ-valerolactone over zirconium phosphates with adjustable Lewis and Brønsted acid sites

[Display omitted] •Zirconium phosphate is efficient and selective for γ-valerolactone (GVL) production.•The properties of the catalyst can be controlled by adjusting Zr and P contents.•Catalytic activity essentially depends on the ratio of Lewis to Brønsted acid sites.•98.1% butyl levulinate convers...

Full description

Saved in:
Bibliographic Details
Published in:Applied catalysis. B, Environmental Environmental, 2017-10, Vol.214, p.67-77
Main Authors: Li, Fukun, France, Liam John, Cai, Zhenping, Li, Yingwen, Liu, Sijie, Lou, Hongming, Long, Jinxing, Li, Xuehui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-94b7ea5ea526b0f652b5d8fa506e2e1a7c40c7e163cc637d6759bae7ed62eb433
cites cdi_FETCH-LOGICAL-c334t-94b7ea5ea526b0f652b5d8fa506e2e1a7c40c7e163cc637d6759bae7ed62eb433
container_end_page 77
container_issue
container_start_page 67
container_title Applied catalysis. B, Environmental
container_volume 214
creator Li, Fukun
France, Liam John
Cai, Zhenping
Li, Yingwen
Liu, Sijie
Lou, Hongming
Long, Jinxing
Li, Xuehui
description [Display omitted] •Zirconium phosphate is efficient and selective for γ-valerolactone (GVL) production.•The properties of the catalyst can be controlled by adjusting Zr and P contents.•Catalytic activity essentially depends on the ratio of Lewis to Brønsted acid sites.•98.1% butyl levulinate conversion is achieved with 95.7% GVL yield over ZrPO-1.00.•The catalyst shows high stability and reusability. The efficient production of γ-valerolactone (GVL) from renewable resources is attracting increasing attention in view of its wide application in fuel and synthetic chemistry. In this study, a series of novel and efficient zirconium phosphate catalysts were developed for the transfer hydrogenation of levulinate esters to GVL using isopropanol as the hydrogen donor. Experimental results show that 98.1% butyl levulinate conversion and 95.7% GVL yield can be achieved with ZrPO-1.00 at 483K after 2.0h. Intensive characterization of the synthesized catalysts using N2 adsorption-desorption, FT-IR, ICP-AES, XPS, NH3-TPD, Py-FTIR and XRD demonstrates that the physicochemical properties, particularly hydrophobicity, Lewis to Brønsted acid site ratio and Lewis acid site strength were subtly tuned via adjustment of the molar proportion of phosphorus to zirconium, which is responsible for excellent transfer hydrogenation activity. Furthermore, this optimized catalyst exhibits high stability and recyclability for at least ten reaction cycles. In addition, a plausible reaction pathway and catalytic mechanism are proposed.
doi_str_mv 10.1016/j.apcatb.2017.05.013
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932117609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337317304137</els_id><sourcerecordid>1932117609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-94b7ea5ea526b0f652b5d8fa506e2e1a7c40c7e163cc637d6759bae7ed62eb433</originalsourceid><addsrcrecordid>eNp9kM2KFDEQx4O44Lj6Bh4CnrvNR3fSfRF08AsGvLjnUJ1UO2l6O22SnmV8i30WL3v37jOZZTwLBQXF719F_Qh5xVnNGVdvphpWC3moBeO6Zm3NuHxCdrzTspJdJ5-SHeuFqqTU8hl5ntLEGBNSdDtyv4cM8zl7S3OEJY0Y6fHsYviOC2QfFhpGOmz5PNMZT9vsyxRpDvTPr-oEM8Ywg81hQRpOJfrTRxsWv93S9RjSeixwonc-Hym4aUsZhhnpAe98orA4-j7-flhSRkfBekeTL_gLcjXCnPDlv35Nbj5--Lb_XB2-fvqyf3eorJRNrvpm0AhtKaEGNqpWDK3rRmiZQoEctG2Y1ciVtFZJ7ZRu-wFQo1MCh0bKa_L6sneN4ceGKZspbHEpJw3vpeBcK9YXqrlQNoaUIo5mjf4W4tlwZh7lm8lc5JtH-Ya1psgvsbeXGJYPTh6jSdbjYtH5iDYbF_z_F_wFPkyVDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932117609</pqid></control><display><type>article</type><title>Catalytic transfer hydrogenation of butyl levulinate to γ-valerolactone over zirconium phosphates with adjustable Lewis and Brønsted acid sites</title><source>ScienceDirect Freedom Collection</source><creator>Li, Fukun ; France, Liam John ; Cai, Zhenping ; Li, Yingwen ; Liu, Sijie ; Lou, Hongming ; Long, Jinxing ; Li, Xuehui</creator><creatorcontrib>Li, Fukun ; France, Liam John ; Cai, Zhenping ; Li, Yingwen ; Liu, Sijie ; Lou, Hongming ; Long, Jinxing ; Li, Xuehui</creatorcontrib><description>[Display omitted] •Zirconium phosphate is efficient and selective for γ-valerolactone (GVL) production.•The properties of the catalyst can be controlled by adjusting Zr and P contents.•Catalytic activity essentially depends on the ratio of Lewis to Brønsted acid sites.•98.1% butyl levulinate conversion is achieved with 95.7% GVL yield over ZrPO-1.00.•The catalyst shows high stability and reusability. The efficient production of γ-valerolactone (GVL) from renewable resources is attracting increasing attention in view of its wide application in fuel and synthetic chemistry. In this study, a series of novel and efficient zirconium phosphate catalysts were developed for the transfer hydrogenation of levulinate esters to GVL using isopropanol as the hydrogen donor. Experimental results show that 98.1% butyl levulinate conversion and 95.7% GVL yield can be achieved with ZrPO-1.00 at 483K after 2.0h. Intensive characterization of the synthesized catalysts using N2 adsorption-desorption, FT-IR, ICP-AES, XPS, NH3-TPD, Py-FTIR and XRD demonstrates that the physicochemical properties, particularly hydrophobicity, Lewis to Brønsted acid site ratio and Lewis acid site strength were subtly tuned via adjustment of the molar proportion of phosphorus to zirconium, which is responsible for excellent transfer hydrogenation activity. Furthermore, this optimized catalyst exhibits high stability and recyclability for at least ten reaction cycles. In addition, a plausible reaction pathway and catalytic mechanism are proposed.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2017.05.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adsorption ; Atomic emission spectroscopy ; Butyl levulinate ; Catalysts ; Catalytic mechanism ; Chemical synthesis ; Desorption ; Emission analysis ; Esters ; Hydrogen storage ; Hydrogenation ; Hydrophobicity ; Inductively coupled plasma ; Isopropanol ; Lewis acid ; Phosphates ; Phosphorus ; Physicochemical properties ; Recyclability ; Renewable resources ; Studies ; Sustainable yield ; Transfer hydrogenation ; X ray photoelectron spectroscopy ; Zirconium ; Zirconium phosphate ; γ-Valerolactone</subject><ispartof>Applied catalysis. B, Environmental, 2017-10, Vol.214, p.67-77</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 5, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-94b7ea5ea526b0f652b5d8fa506e2e1a7c40c7e163cc637d6759bae7ed62eb433</citedby><cites>FETCH-LOGICAL-c334t-94b7ea5ea526b0f652b5d8fa506e2e1a7c40c7e163cc637d6759bae7ed62eb433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Fukun</creatorcontrib><creatorcontrib>France, Liam John</creatorcontrib><creatorcontrib>Cai, Zhenping</creatorcontrib><creatorcontrib>Li, Yingwen</creatorcontrib><creatorcontrib>Liu, Sijie</creatorcontrib><creatorcontrib>Lou, Hongming</creatorcontrib><creatorcontrib>Long, Jinxing</creatorcontrib><creatorcontrib>Li, Xuehui</creatorcontrib><title>Catalytic transfer hydrogenation of butyl levulinate to γ-valerolactone over zirconium phosphates with adjustable Lewis and Brønsted acid sites</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted] •Zirconium phosphate is efficient and selective for γ-valerolactone (GVL) production.•The properties of the catalyst can be controlled by adjusting Zr and P contents.•Catalytic activity essentially depends on the ratio of Lewis to Brønsted acid sites.•98.1% butyl levulinate conversion is achieved with 95.7% GVL yield over ZrPO-1.00.•The catalyst shows high stability and reusability. The efficient production of γ-valerolactone (GVL) from renewable resources is attracting increasing attention in view of its wide application in fuel and synthetic chemistry. In this study, a series of novel and efficient zirconium phosphate catalysts were developed for the transfer hydrogenation of levulinate esters to GVL using isopropanol as the hydrogen donor. Experimental results show that 98.1% butyl levulinate conversion and 95.7% GVL yield can be achieved with ZrPO-1.00 at 483K after 2.0h. Intensive characterization of the synthesized catalysts using N2 adsorption-desorption, FT-IR, ICP-AES, XPS, NH3-TPD, Py-FTIR and XRD demonstrates that the physicochemical properties, particularly hydrophobicity, Lewis to Brønsted acid site ratio and Lewis acid site strength were subtly tuned via adjustment of the molar proportion of phosphorus to zirconium, which is responsible for excellent transfer hydrogenation activity. Furthermore, this optimized catalyst exhibits high stability and recyclability for at least ten reaction cycles. In addition, a plausible reaction pathway and catalytic mechanism are proposed.</description><subject>Adsorption</subject><subject>Atomic emission spectroscopy</subject><subject>Butyl levulinate</subject><subject>Catalysts</subject><subject>Catalytic mechanism</subject><subject>Chemical synthesis</subject><subject>Desorption</subject><subject>Emission analysis</subject><subject>Esters</subject><subject>Hydrogen storage</subject><subject>Hydrogenation</subject><subject>Hydrophobicity</subject><subject>Inductively coupled plasma</subject><subject>Isopropanol</subject><subject>Lewis acid</subject><subject>Phosphates</subject><subject>Phosphorus</subject><subject>Physicochemical properties</subject><subject>Recyclability</subject><subject>Renewable resources</subject><subject>Studies</subject><subject>Sustainable yield</subject><subject>Transfer hydrogenation</subject><subject>X ray photoelectron spectroscopy</subject><subject>Zirconium</subject><subject>Zirconium phosphate</subject><subject>γ-Valerolactone</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM2KFDEQx4O44Lj6Bh4CnrvNR3fSfRF08AsGvLjnUJ1UO2l6O22SnmV8i30WL3v37jOZZTwLBQXF719F_Qh5xVnNGVdvphpWC3moBeO6Zm3NuHxCdrzTspJdJ5-SHeuFqqTU8hl5ntLEGBNSdDtyv4cM8zl7S3OEJY0Y6fHsYviOC2QfFhpGOmz5PNMZT9vsyxRpDvTPr-oEM8Ywg81hQRpOJfrTRxsWv93S9RjSeixwonc-Hym4aUsZhhnpAe98orA4-j7-flhSRkfBekeTL_gLcjXCnPDlv35Nbj5--Lb_XB2-fvqyf3eorJRNrvpm0AhtKaEGNqpWDK3rRmiZQoEctG2Y1ciVtFZJ7ZRu-wFQo1MCh0bKa_L6sneN4ceGKZspbHEpJw3vpeBcK9YXqrlQNoaUIo5mjf4W4tlwZh7lm8lc5JtH-Ya1psgvsbeXGJYPTh6jSdbjYtH5iDYbF_z_F_wFPkyVDg</recordid><startdate>20171005</startdate><enddate>20171005</enddate><creator>Li, Fukun</creator><creator>France, Liam John</creator><creator>Cai, Zhenping</creator><creator>Li, Yingwen</creator><creator>Liu, Sijie</creator><creator>Lou, Hongming</creator><creator>Long, Jinxing</creator><creator>Li, Xuehui</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20171005</creationdate><title>Catalytic transfer hydrogenation of butyl levulinate to γ-valerolactone over zirconium phosphates with adjustable Lewis and Brønsted acid sites</title><author>Li, Fukun ; France, Liam John ; Cai, Zhenping ; Li, Yingwen ; Liu, Sijie ; Lou, Hongming ; Long, Jinxing ; Li, Xuehui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-94b7ea5ea526b0f652b5d8fa506e2e1a7c40c7e163cc637d6759bae7ed62eb433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adsorption</topic><topic>Atomic emission spectroscopy</topic><topic>Butyl levulinate</topic><topic>Catalysts</topic><topic>Catalytic mechanism</topic><topic>Chemical synthesis</topic><topic>Desorption</topic><topic>Emission analysis</topic><topic>Esters</topic><topic>Hydrogen storage</topic><topic>Hydrogenation</topic><topic>Hydrophobicity</topic><topic>Inductively coupled plasma</topic><topic>Isopropanol</topic><topic>Lewis acid</topic><topic>Phosphates</topic><topic>Phosphorus</topic><topic>Physicochemical properties</topic><topic>Recyclability</topic><topic>Renewable resources</topic><topic>Studies</topic><topic>Sustainable yield</topic><topic>Transfer hydrogenation</topic><topic>X ray photoelectron spectroscopy</topic><topic>Zirconium</topic><topic>Zirconium phosphate</topic><topic>γ-Valerolactone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fukun</creatorcontrib><creatorcontrib>France, Liam John</creatorcontrib><creatorcontrib>Cai, Zhenping</creatorcontrib><creatorcontrib>Li, Yingwen</creatorcontrib><creatorcontrib>Liu, Sijie</creatorcontrib><creatorcontrib>Lou, Hongming</creatorcontrib><creatorcontrib>Long, Jinxing</creatorcontrib><creatorcontrib>Li, Xuehui</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fukun</au><au>France, Liam John</au><au>Cai, Zhenping</au><au>Li, Yingwen</au><au>Liu, Sijie</au><au>Lou, Hongming</au><au>Long, Jinxing</au><au>Li, Xuehui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic transfer hydrogenation of butyl levulinate to γ-valerolactone over zirconium phosphates with adjustable Lewis and Brønsted acid sites</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2017-10-05</date><risdate>2017</risdate><volume>214</volume><spage>67</spage><epage>77</epage><pages>67-77</pages><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted] •Zirconium phosphate is efficient and selective for γ-valerolactone (GVL) production.•The properties of the catalyst can be controlled by adjusting Zr and P contents.•Catalytic activity essentially depends on the ratio of Lewis to Brønsted acid sites.•98.1% butyl levulinate conversion is achieved with 95.7% GVL yield over ZrPO-1.00.•The catalyst shows high stability and reusability. The efficient production of γ-valerolactone (GVL) from renewable resources is attracting increasing attention in view of its wide application in fuel and synthetic chemistry. In this study, a series of novel and efficient zirconium phosphate catalysts were developed for the transfer hydrogenation of levulinate esters to GVL using isopropanol as the hydrogen donor. Experimental results show that 98.1% butyl levulinate conversion and 95.7% GVL yield can be achieved with ZrPO-1.00 at 483K after 2.0h. Intensive characterization of the synthesized catalysts using N2 adsorption-desorption, FT-IR, ICP-AES, XPS, NH3-TPD, Py-FTIR and XRD demonstrates that the physicochemical properties, particularly hydrophobicity, Lewis to Brønsted acid site ratio and Lewis acid site strength were subtly tuned via adjustment of the molar proportion of phosphorus to zirconium, which is responsible for excellent transfer hydrogenation activity. Furthermore, this optimized catalyst exhibits high stability and recyclability for at least ten reaction cycles. In addition, a plausible reaction pathway and catalytic mechanism are proposed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2017.05.013</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2017-10, Vol.214, p.67-77
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_1932117609
source ScienceDirect Freedom Collection
subjects Adsorption
Atomic emission spectroscopy
Butyl levulinate
Catalysts
Catalytic mechanism
Chemical synthesis
Desorption
Emission analysis
Esters
Hydrogen storage
Hydrogenation
Hydrophobicity
Inductively coupled plasma
Isopropanol
Lewis acid
Phosphates
Phosphorus
Physicochemical properties
Recyclability
Renewable resources
Studies
Sustainable yield
Transfer hydrogenation
X ray photoelectron spectroscopy
Zirconium
Zirconium phosphate
γ-Valerolactone
title Catalytic transfer hydrogenation of butyl levulinate to γ-valerolactone over zirconium phosphates with adjustable Lewis and Brønsted acid sites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A06%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20transfer%20hydrogenation%20of%20butyl%20levulinate%20to%20%CE%B3-valerolactone%20over%20zirconium%20phosphates%20with%20adjustable%20Lewis%20and%20Br%C3%B8nsted%20acid%20sites&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Li,%20Fukun&rft.date=2017-10-05&rft.volume=214&rft.spage=67&rft.epage=77&rft.pages=67-77&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2017.05.013&rft_dat=%3Cproquest_cross%3E1932117609%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-94b7ea5ea526b0f652b5d8fa506e2e1a7c40c7e163cc637d6759bae7ed62eb433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1932117609&rft_id=info:pmid/&rfr_iscdi=true