Loading…
Statistical Mechanics of On-Line Learning Using Correlated Examples and Its Optimal Scheduling
We theoretically study the generalization capability of on-line learning using several correlated input vectors in each update in a statistical-mechanical manner. We consider a model organized with linear perceptrons with Gaussian noise. First, in a noiseless case, we analytically derive the optimal...
Saved in:
Published in: | Journal of the Physical Society of Japan 2017-08, Vol.86 (8), p.84804 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We theoretically study the generalization capability of on-line learning using several correlated input vectors in each update in a statistical-mechanical manner. We consider a model organized with linear perceptrons with Gaussian noise. First, in a noiseless case, we analytically derive the optimal learning rate as a function of the number of examples used in one update and their correlation. Next, we analytically show that the use of correlated examples is effective if the optimal learning rate is used, even when there is some noise. Furthermore, we propose a novel algorithm that raises the generalization capability by increasing the number of examples used in one update with time. |
---|---|
ISSN: | 0031-9015 1347-4073 |
DOI: | 10.7566/JPSJ.86.084804 |