Loading…

Singularities and conjugate points in FLRW spacetimes

Conjugate points play an important role in the proofs of the singularity theorems of Hawking and Penrose. We examine the relation between singularities and conjugate points in FLRW spacetimes with a singularity. In particular we prove a theorem that when a non-comoving, non-spacelike geodesic in a s...

Full description

Saved in:
Bibliographic Details
Published in:General relativity and gravitation 2017-10, Vol.49 (10), p.1-16, Article 133
Main Authors: het Lam, Huibert, Prokopec, Tomislav
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Conjugate points play an important role in the proofs of the singularity theorems of Hawking and Penrose. We examine the relation between singularities and conjugate points in FLRW spacetimes with a singularity. In particular we prove a theorem that when a non-comoving, non-spacelike geodesic in a singular FLRW spacetime obeys conditions ( 39 ) and ( 40 ), every point on that geodesic is part of a pair of conjugate points. The proof is based on the Raychaudhuri equation. We find that the theorem is applicable to all non-comoving, non-spacelike geodesics in FLRW spacetimes with non-negative spatial curvature and scale factors that near the singularity have power law behavior or power law behavior times a logarithm. When the spatial curvature is negative, the theorem is applicable to a subset of these spacetimes.
ISSN:0001-7701
1572-9532
DOI:10.1007/s10714-017-2299-3