Loading…
A hitherto unrecognized source of low-energy electrons in water
Most of the low-energy electrons emitted from a material when it is subjected to ionization radiation are believed to be directly ionized secondary electrons. Coincidence measurements of the electrons ejected from water clusters suggests many are produced by a quantitatively new mechanism, known as...
Saved in:
Published in: | Nature physics 2010-02, Vol.6 (2), p.143-146 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Most of the low-energy electrons emitted from a material when it is subjected to ionization radiation are believed to be directly ionized secondary electrons. Coincidence measurements of the electrons ejected from water clusters suggests many are produced by a quantitatively new mechanism, known as intermolecular Coulombic decay.
Low-energy electrons are the most abundant product of ionizing radiation in condensed matter. The origin of these electrons is most commonly understood to be secondary electrons
1
ionized from core or valence levels by incident radiation and slowed by multiple inelastic scattering events. Here, we investigate the production of low-energy electrons in amorphous medium-sized water clusters, which simulate water molecules in an aqueous environment. We identify a hitherto unrecognized extra source of low-energy electrons produced by a non-local autoionization process called intermolecular coulombic decay
2
(ICD). The unequivocal signature of this process is observed in coincidence measurements of low-energy electrons and photoelectrons generated from inner-valence states with vacuum-ultraviolet light. As ICD is expected to take place universally in weakly bound aggregates containing light atoms between carbon and neon in the periodic table
2
,
3
, these results could have implications for our understanding of ionization damage in living tissues. |
---|---|
ISSN: | 1745-2473 1745-2481 |
DOI: | 10.1038/nphys1500 |