Loading…

Wood-inhabiting bryophyte communities are influenced by different management intensities in the past

Many studies have underlined the fact that once forest continuity is broken, communities of wood-inhabiting organisms may never be restored to their original status. However, only a few studies have actually presented results from sites that have current old-growth structure, and where the history o...

Full description

Saved in:
Bibliographic Details
Published in:Biodiversity and conservation 2017-11, Vol.26 (12), p.2893-2909
Main Authors: Táborská, M., Procházková, J., Lengyel, A., Vrška, T., Hort, L., Ódor, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many studies have underlined the fact that once forest continuity is broken, communities of wood-inhabiting organisms may never be restored to their original status. However, only a few studies have actually presented results from sites that have current old-growth structure, and where the history of human interventions is known. In this study we compared the species richness, nestedness, beta diversity, and composition of bryophytes from living trunks and dead logs of beech ( Fagus sylvatica ) in seven forest stands in the Czech Republic with old-growth structure and various histories of past human impact. Our analysis showed that these communities are nested and that their beta diversity is lower than random. There was a significant proportion of shared species, and rare species were present only in the most heterogeneous and the least man affected habitats. We found that bryophyte communities of forests with more intensive past management were significantly impoverished in terms of both species richness and composition. Beta diversity was not related to management history and reflected current habitat heterogeneity. The effect of decay stage on species richness and beta diversity was stronger than the site effect. Our results demonstrate that the protection of current natural beech-dominated forests and improvements to their connectivity in fragmented landscapes are crucial for the survival and restoration of the diversity of wood-inhabiting bryophytes.
ISSN:0960-3115
1572-9710
DOI:10.1007/s10531-017-1395-8