Loading…
Prospective of Microbial Exopolysaccharide for Heavy Metal Exclusion
Metals as a resource are depleting, and on another side, it fetches serious environmental pollution causing a threat to human health and ecosystem. The heavy metal accumulation due to anthropogenic activities results in toxicological manifestation. The traditional methods of remediation are not cost...
Saved in:
Published in: | Applied biochemistry and biotechnology 2017-10, Vol.183 (2), p.582-600 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Metals as a resource are depleting, and on another side, it fetches serious environmental pollution causing a threat to human health and ecosystem. The heavy metal accumulation due to anthropogenic activities results in toxicological manifestation. The traditional methods of remediation are not cost effective, efficient, and ecofriendly which necessitate and motivate towards the safe, effective, and ecofriendly biological methods. The increasing presence of heavy metals in the microbial habitat compels the microbes to develop the ability to tolerate or resist the presence of heavy metals. Exopolysaccharide (EPS) production is one of the strategies of microbes to fight against metal stress. EPS is a microbial biopolymer which is generally produced under stress from harsh environment and nutrition conditions. EPSs are cell-associated or secreted outside the cell and comprised organic macromolecules such as polysaccharides, proteins, and phospholipids in addition to some non-polymeric molecules. EPSs work as competent biosorbents with an anionic reactant group that effectively sequesters cationic heavy metals by electrostatic interactions. The present paper summarizes the EPSs with its types, role, and biosynthesis and an endeavor to elucidate the interaction mechanism of EPSs with heavy metal with supportive and distinctive applications for heavy metal exclusion. The review concluded with the current challenges and future prospects to make the EPS an efficient biosorbent. |
---|---|
ISSN: | 0273-2289 1559-0291 |
DOI: | 10.1007/s12010-017-2591-4 |