Loading…
Networks of ·/G/∞ queues with shot-noise-driven arrival intensities
We study infinite-server queues in which the arrival process is a Cox process (or doubly stochastic Poisson process), of which the arrival rate is given by a shot-noise process. A shot-noise rate emerges naturally in cases where the arrival rate tends to exhibit sudden increases (or shots) at random...
Saved in:
Published in: | Queueing systems 2017-08, Vol.86 (3-4), p.301-325 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study infinite-server queues in which the arrival process is a Cox process (or doubly stochastic Poisson process), of which the arrival rate is given by a shot-noise process. A shot-noise rate emerges naturally in cases where the arrival rate tends to exhibit sudden increases (or shots) at random epochs, after which the rate is inclined to revert to lower values. Exponential decay of the shot noise is assumed, so that the queueing systems are amenable to analysis. In particular, we perform transient analysis on the number of jobs in the queue jointly with the value of the driving shot-noise process. Additionally, we derive heavy-traffic asymptotics for the number of jobs in the system by using a linear scaling of the shot intensity. First we focus on a one-dimensional setting in which there is a single infinite-server queue, which we then extend to a network setting. |
---|---|
ISSN: | 0257-0130 1572-9443 |
DOI: | 10.1007/s11134-017-9520-7 |