Loading…
Asymptotic results for the multiple scan statistic
The contribution of the theory of scan statistics to the study of many real-life applications has been rapidly expanding during the last decades. The multiple scan statistic, defined on a sequence of n Bernoulli trials, enumerates the number of occurrences of k consecutive trials which contain at le...
Saved in:
Published in: | Journal of applied probability 2017-03, Vol.54 (1), p.320-330 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The contribution of the theory of scan statistics to the study of many real-life applications has been rapidly expanding during the last decades. The multiple scan statistic, defined on a sequence of n Bernoulli trials, enumerates the number of occurrences of k consecutive trials which contain at least r successes among them (r≤k≤n). In this paper we establish some asymptotic results for the distribution of the multiple scan statistic, as n,k,r→∞ and illustrate their accuracy through a simulation study. Our approach is based on an appropriate combination of compound Poisson approximation and random walk theory. |
---|---|
ISSN: | 0021-9002 1475-6072 |
DOI: | 10.1017/jpr.2016.102 |