Loading…
Strong Averaging Along Foliated Lévy Diffusions with Heavy Tails on Compact Leaves
This article shows a strong averaging principle for diffusions driven by discontinuous heavy-tailed Lévy noise, which are invariant on the compact horizontal leaves of a foliated manifold subject to small transversal random perturbations. We extend a result for such diffusions with exponential momen...
Saved in:
Published in: | Potential analysis 2017-10, Vol.47 (3), p.277-311 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article shows a strong averaging principle for diffusions driven by discontinuous heavy-tailed Lévy noise, which are invariant on the compact horizontal leaves of a foliated manifold subject to small transversal random perturbations. We extend a result for such diffusions with exponential moments and bounded, deterministic perturbations to diffusions with polynomial moments of order
p
≥
2
, perturbed by deterministic and stochastic integrals with unbounded coefficients and polynomial moments. The main argument relies on a result of the dynamical system for each individual jump increments of the corresponding canonical Marcus equation. The example of Lévy rotations on the unit circle subject to perturbations by a planar Lévy-Ornstein-Uhlenbeck process is carried out in detail. |
---|---|
ISSN: | 0926-2601 1572-929X |
DOI: | 10.1007/s11118-017-9615-0 |