Loading…

A Biomimetic Escape Strategy for Cytoplasm Invasion by Synthetic Particles

The translocation of nanomaterials or complex delivery systems into the cytosol is a major challenge in nanobiotechnology. After receptor‐mediated endocytosis, most nanomaterials are sequestered and undergo degradation, therapy inactivation, or exocytosis. Herein we explore a novel surface particle...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2017-10, Vol.129 (44), p.13924-13928
Main Authors: Iturrioz‐Rodríguez, Nerea, González‐Domínguez, Elena, González‐Lavado, Eloisa, Marín‐Caba, Laura, Vaz, Belén, Pérez‐Lorenzo, Moisés, Correa‐Duarte, Miguel A., Fanarraga, Monica L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The translocation of nanomaterials or complex delivery systems into the cytosol is a major challenge in nanobiotechnology. After receptor‐mediated endocytosis, most nanomaterials are sequestered and undergo degradation, therapy inactivation, or exocytosis. Herein we explore a novel surface particle coating made of adsorbed carbon nanotubes that provides coated materials with new properties that reproduce the viral cell‐invasive mechanisms, namely, receptor‐mediated endocytosis, endolysosomal escape, and cytosolic particle release preserving cell viability. This novel biomimetic coating design will enable the intracytoplasmic delivery of many different functional materials endowed with therapeutic, magnetic, optical, or catalytic functionalities, thus opening the door to a wide array of chemical and physical processes within the cytosolic or nuclear domains, and supporting new developments in the biotechnological, pharmaceutical, and biomedical industries. Eine Nanobeschichtung aus Kohlenstoffnanoröhren (CNTs) ermöglicht es nm/μm‐großen Partikeln, lysosomale Membranen zu durchbrechen und in den intrazellulären Raum einzudringen (siehe Bild). Die beschichteten Materialien ähneln in ihrer Struktur Viren und reproduzieren die viralen Zellinvasionsmechanismen der rezeptorvermittelten Endocytose, des endolysosomalen Austritts und der cytosolischen Partikelfreisetzung unter Beibehaltung der Zellviabilität.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.201707769