Loading…
On existence of good self-dual quasi-cyclic codes
For a long time, asymptotically good self-dual codes have been known to exist. Asymptotically good 2-quasicyclic codes of rate 1/2 have also been known to exist for a long time. Recently, it was proved that there are binary self-dual n/3-quasicyclic codes of length n asymptotically meeting the Gilbe...
Saved in:
Published in: | IEEE transactions on information theory 2004-08, Vol.50 (8), p.1794-1798 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For a long time, asymptotically good self-dual codes have been known to exist. Asymptotically good 2-quasicyclic codes of rate 1/2 have also been known to exist for a long time. Recently, it was proved that there are binary self-dual n/3-quasicyclic codes of length n asymptotically meeting the Gilbert-Varshamov bound. Unlike 2-quasicyclic codes, which are defined to have a cyclic group of order n/2 as a subgroup of their permutation group, the n/3-quasicyclic c codes are defined with a permutation group of fixed order of 3. So, from the decoding point of view, 2-quasicyclic c codes are preferable to n/3-quasicyclic c codes. In this correspondence, with the assumption that there are infinite primes p with respect to (w r t.) which 2 is primitive, we prove that there exist classes of self-dual 2p-quasicyclic c codes and Type II 8p-quasicyclic c codes of length respectively 2p/sup 2/ and 8p/sup 2/ which asymptotically meet the Gilbert-Varshamov bound. When compared with the order of the defining permutation groups, these classes of codes lie between the 2-quasicyclic c codes and the n/3-quasicyclic c codes of length n, considered in previous works. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2004.831855 |