Loading…
Fisher information and stochastic complexity
By taking into account the Fisher information and removing an inherent redundancy in earlier two-part codes, a sharper code length as the stochastic complexity and the associated universal process are derived for a class of parametric processes. The main condition required is that the maximum-likeli...
Saved in:
Published in: | IEEE transactions on information theory 1996-01, Vol.42 (1), p.40-47 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | By taking into account the Fisher information and removing an inherent redundancy in earlier two-part codes, a sharper code length as the stochastic complexity and the associated universal process are derived for a class of parametric processes. The main condition required is that the maximum-likelihood estimates satisfy the central limit theorem. The same code length is also obtained from the so-called maximum-likelihood code. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/18.481776 |