Loading…
Quasi-cyclic LDPC codes for fast encoding
In this correspondence we present a special class of quasi-cyclic low-density parity-check (QC-LDPC) codes, called block-type LDPC (B-LDPC) codes, which have an efficient encoding algorithm due to the simple structure of their parity-check matrices. Since the parity-check matrix of a QC-LDPC code co...
Saved in:
Published in: | IEEE transactions on information theory 2005-08, Vol.51 (8), p.2894-2901 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this correspondence we present a special class of quasi-cyclic low-density parity-check (QC-LDPC) codes, called block-type LDPC (B-LDPC) codes, which have an efficient encoding algorithm due to the simple structure of their parity-check matrices. Since the parity-check matrix of a QC-LDPC code consists of circulant permutation matrices or the zero matrix, the required memory for storing it can be significantly reduced, as compared with randomly constructed LDPC codes. We show that the girth of a QC-LDPC code is upper-bounded by a certain number which is determined by the positions of circulant permutation matrices. The B-LDPC codes are constructed as irregular QC-LDPC codes with parity-check matrices of an almost lower triangular form so that they have an efficient encoding algorithm, good noise threshold, and low error floor. Their encoding complexity is linearly scaled regardless of the size of circulant permutation matrices. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2005.851753 |