Loading…
Local asymptotic coding and the minimum description length
Local asymptotic arguments imply that parameter selection via the minimum description length (MDL) resembles a traditional hypothesis test. A common approximation for MDL estimates the cost of adding a parameter at about (1/2)log n bits for a model fit to n observations. While accurate for parameter...
Saved in:
Published in: | IEEE transactions on information theory 1999-05, Vol.45 (4), p.1289-1293 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Local asymptotic arguments imply that parameter selection via the minimum description length (MDL) resembles a traditional hypothesis test. A common approximation for MDL estimates the cost of adding a parameter at about (1/2)log n bits for a model fit to n observations. While accurate for parameters which are large on a standardized scale, this approximation overstates the parameter cost near zero. We find that encoding the parameter produces a shorter description length when the corresponding estimator is about two standard errors away from zero, as in a traditional statistical hypothesis test. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/18.761287 |