Loading…
A numerical study on drop formation of viscoelastic liquids using a nonlinear constitutive equation
In this paper, a numerical solution for viscoelastic drop formation from a nozzle into an ambient gas is presented. A volume of fluid (VOF) method is used to predict the formation and break-up process of viscoelastic drop. Here, Giesekus model is used as the constitutive equation. The major features...
Saved in:
Published in: | Meccanica (Milan) 2017-12, Vol.52 (15), p.3593-3613 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a numerical solution for viscoelastic drop formation from a nozzle into an ambient gas is presented. A volume of fluid (VOF) method is used to predict the formation and break-up process of viscoelastic drop. Here, Giesekus model is used as the constitutive equation. The major features of the phenomenon, such as instantaneous drop length, limiting length of a drop at breakup, minimum drop radius and the volume of the primary drop is determined for a range of the parameter space spanned by the appropriate dimensionless groups. The results reveal that enhancing the mobility factor, Wiessenberg number, and viscosity ratio causes a noticeable decrease in limiting drop length and a small decrease on the primary drop volume. Also, the increasing of gravitational bond number and capillary number causes the limiting drop length increases while the primary drop volume is reduced. |
---|---|
ISSN: | 0025-6455 1572-9648 |
DOI: | 10.1007/s11012-017-0669-2 |