Loading…

A numerical study on drop formation of viscoelastic liquids using a nonlinear constitutive equation

In this paper, a numerical solution for viscoelastic drop formation from a nozzle into an ambient gas is presented. A volume of fluid (VOF) method is used to predict the formation and break-up process of viscoelastic drop. Here, Giesekus model is used as the constitutive equation. The major features...

Full description

Saved in:
Bibliographic Details
Published in:Meccanica (Milan) 2017-12, Vol.52 (15), p.3593-3613
Main Authors: Komeili Birjandi, A., Norouzi, M., Kayhani, M. H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a numerical solution for viscoelastic drop formation from a nozzle into an ambient gas is presented. A volume of fluid (VOF) method is used to predict the formation and break-up process of viscoelastic drop. Here, Giesekus model is used as the constitutive equation. The major features of the phenomenon, such as instantaneous drop length, limiting length of a drop at breakup, minimum drop radius and the volume of the primary drop is determined for a range of the parameter space spanned by the appropriate dimensionless groups. The results reveal that enhancing the mobility factor, Wiessenberg number, and viscosity ratio causes a noticeable decrease in limiting drop length and a small decrease on the primary drop volume. Also, the increasing of gravitational bond number and capillary number causes the limiting drop length increases while the primary drop volume is reduced.
ISSN:0025-6455
1572-9648
DOI:10.1007/s11012-017-0669-2