Loading…
A preparation of homogeneous distribution of palladium nanoparticle on poly (acrylic acid)-functionalized graphene oxide modified electrode for formalin oxidation
[Display omitted] An excellent electrocatalytic activity, repeatability and stability of electrochemical sensor for formalin detection was fabricated based on a homogeneous distribution of ellipsoidal palladium nanoparticle (PdNPs) on poly (acrylic acid)-functionalized graphene oxide (PAA-GO) modifi...
Saved in:
Published in: | Electrochimica acta 2017-09, Vol.247, p.229-240 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
An excellent electrocatalytic activity, repeatability and stability of electrochemical sensor for formalin detection was fabricated based on a homogeneous distribution of ellipsoidal palladium nanoparticle (PdNPs) on poly (acrylic acid)-functionalized graphene oxide (PAA-GO) modified on a glassy carbon electrode (GCE) (PdNPs-PAA-GO/GCE) with incorporated flow injection amperometry (FI-Amp). Homogeneous distribution of ellipsoidal palladium nanoparticles (PdNPs) were dispersed on PAA-GO via an electroless deposition method. The surface morphology and electrochemical behavior of the PdNPs-PAA-GO/GCE were characterized by transmission electron microscopy, fourier transform infrared spectroscopy, cyclic voltammetry and amperometry. The PdNPs-PAA-GO/GCE exhibited excellent electrocatalytic activity toward formalin oxidation. Then this modified electrode was incorporated with FI-Amp for formalin sensor development. In order to obtain good analytical performances, many parameters such as the amount of PdNPs-PAA-GO, applied potential, flow rate and sample volume were optimized. Under optimal conditions, this sensor provided a wide linear range, 50-50,000μmolL−1, with high sensitivity (320μAmmolL−1cm−2). The limit of detection and limit of quantitation were 16μmolL−1 and 53μmolL−1, respectively. This proposed sensor exhibited good repeatability (RSD |
---|---|
ISSN: | 0013-4686 1873-3859 |
DOI: | 10.1016/j.electacta.2017.06.131 |