Loading…

Assessment of rhizosphere processes for removing water-borne macrolide antibiotics in constructed wetlands

Aims Limited information is available on plant rhizosphere processes for removing antibiotics in antibiotic-contaminated waters. This study identifies rhizosphere processes and evaluates their relative contributions for the macrolides (ML) removal in aquatic plant systems. Methods A flask-scale expe...

Full description

Saved in:
Bibliographic Details
Published in:Plant and soil 2017-10, Vol.419 (1/2), p.489-502
Main Authors: Tai, Yiping, Tam, Nora Fung-Yee, Dai, Yunv, Yang, Yang, Lin, Jianhua, Tao, Ran, Yang, Yufen, Wang, Jiaxi, Wang, Rui, Huang, Wenda, Xu, Xiaodan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aims Limited information is available on plant rhizosphere processes for removing antibiotics in antibiotic-contaminated waters. This study identifies rhizosphere processes and evaluates their relative contributions for the macrolides (ML) removal in aquatic plant systems. Methods A flask-scale experiment (100 and 300 μg/L ML) incorporating Juncus effuses and Canna indica was used to identify the root adsorption, rhizobacterial influences, and plant uptake responsible for the ML (i.e., anhydroerythromycin A, roxithromycin, clarithromycin and tilmicosin) removal. Results Total ML removal rates due to rhizosphere processes were respectively 43.7–67.6% and 44.3–82.2% at 100 and 300 μg/L ML. J. effuses removed ML more effectively than C. indica (P < 0.05). The relative contribution of rhizospheric pathways to remove all ML followed the order: root sorption > rhizobacterial influence > plant uptake (P < 0.01). Sorption and rhizobacterial activity were important removal pathways in wetland plant microcosms, accounting for 36.5–72.8% and 20.5–54.2% of the total rhizosphere associated removal of ML, respectively. Conclusions Root sorption and rhizobacterial influence were the main rhizospheric pathways of ML removal in aquatic plant systems. Fe plaque on the root surface, rhizobacterial number and bacterial activity play significant roles in the removal of target pollutants.
ISSN:0032-079X
1573-5036
DOI:10.1007/s11104-017-3359-x