Loading…

Complementary Inequalities to Improved AM-GM Inequality

Following an idea of Lin, we prove that if A and B are two positive operators such that 0 〈 mI 〈 A 〈 m'I ≤ M'I ≤B 〈 MI, then Ф^2(A+B/2)≤K^2(h)/(1+(logM'/m')^2/8)^2Ф^2(A#B),and Ф^2(A+B/2)≤K^2(h)/(1+(logM'/m')^2/8)^2(Ф(A)#Ф(B))^2,where K(h) = (h+1)2 /4h and h = M and Ф is a positive unital linear map....

Full description

Saved in:
Bibliographic Details
Published in:Acta mathematica Sinica. English series 2017-12, Vol.33 (12), p.1609-1616
Main Authors: Moradi, Hamid Reza, Omidvar, Mohsen Erfanian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Following an idea of Lin, we prove that if A and B are two positive operators such that 0 〈 mI 〈 A 〈 m'I ≤ M'I ≤B 〈 MI, then Ф^2(A+B/2)≤K^2(h)/(1+(logM'/m')^2/8)^2Ф^2(A#B),and Ф^2(A+B/2)≤K^2(h)/(1+(logM'/m')^2/8)^2(Ф(A)#Ф(B))^2,where K(h) = (h+1)2 /4h and h = M and Ф is a positive unital linear map.
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-017-7118-y