Loading…
On conservation laws by Lie symmetry analysis for (2+1)-dimensional Bogoyavlensky–Konopelchenko equation in wave propagation
In this paper, using the Lie group analysis method, the infinitesimal generators for (2+1)-dimensional Bogoyavlensky–Konopelchenko equation are obtained. The new concept of nonlinear self-adjointness of differential equations is used for construction of nonlocal conservation laws. The conservation l...
Saved in:
Published in: | Computers & mathematics with applications (1987) 2017-09, Vol.74 (6), p.1158-1165 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, using the Lie group analysis method, the infinitesimal generators for (2+1)-dimensional Bogoyavlensky–Konopelchenko equation are obtained. The new concept of nonlinear self-adjointness of differential equations is used for construction of nonlocal conservation laws. The conservation laws for the (2+1)-dimensional Bogoyavlensky–Konopelchenko equation are obtained by using the new conservation theorem method and the formal Lagrangian approach. Transforming this equation into a system of equations involving with two dependent variables, it has been shown that the resultant system of equations is quasi self-adjoint and finally the new nonlocal conservation laws are constructed by using the Lie symmetry operators. |
---|---|
ISSN: | 0898-1221 1873-7668 |
DOI: | 10.1016/j.camwa.2017.06.007 |