Loading…

An asymptotic model for the propagation of oceanic internal tides through quasi-geostrophic flow

We derive a time-averaged ‘hydrostatic wave equation’ from the hydrostatic Boussinesq equations that describes the propagation of inertia–gravity internal waves through quasi-geostrophic flow. The derivation uses a multiple-scale asymptotic method to isolate wave field evolution over intervals much...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2017-10, Vol.828, p.779-811
Main Authors: Wagner, G. L., Ferrando, G., Young, W. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We derive a time-averaged ‘hydrostatic wave equation’ from the hydrostatic Boussinesq equations that describes the propagation of inertia–gravity internal waves through quasi-geostrophic flow. The derivation uses a multiple-scale asymptotic method to isolate wave field evolution over intervals much longer than a wave period, assumes the wave field has a well-defined non-inertial frequency such as that of the mid-latitude semi-diurnal lunar tide, assumes that the wave field and quasi-geostrophic flow have comparable spatial scales and neglects nonlinear wave–wave dynamics. As a result the hydrostatic wave equation is a reduced model applicable to the propagation of large-scale internal tides through the inhomogeneous and moving ocean. A numerical comparison with the linearized and hydrostatic Boussinesq equations demonstrates the validity of the hydrostatic wave equation model and illustrates how the model fails when the quasi-geostrophic flow is too strong and the wave frequency is too close to inertial. The hydrostatic wave equation provides a first step toward a coupled model for energy transfer between oceanic internal tides and quasi-geostrophic eddies and currents.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2017.509