Loading…

An asymptotic model for the propagation of oceanic internal tides through quasi-geostrophic flow

We derive a time-averaged ‘hydrostatic wave equation’ from the hydrostatic Boussinesq equations that describes the propagation of inertia–gravity internal waves through quasi-geostrophic flow. The derivation uses a multiple-scale asymptotic method to isolate wave field evolution over intervals much...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2017-10, Vol.828, p.779-811
Main Authors: Wagner, G. L., Ferrando, G., Young, W. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-11c25ad5f837cd503d369e26b9eec0127ce034fb2f8755d386df41ce61fc9f73
cites cdi_FETCH-LOGICAL-c368t-11c25ad5f837cd503d369e26b9eec0127ce034fb2f8755d386df41ce61fc9f73
container_end_page 811
container_issue
container_start_page 779
container_title Journal of fluid mechanics
container_volume 828
creator Wagner, G. L.
Ferrando, G.
Young, W. R.
description We derive a time-averaged ‘hydrostatic wave equation’ from the hydrostatic Boussinesq equations that describes the propagation of inertia–gravity internal waves through quasi-geostrophic flow. The derivation uses a multiple-scale asymptotic method to isolate wave field evolution over intervals much longer than a wave period, assumes the wave field has a well-defined non-inertial frequency such as that of the mid-latitude semi-diurnal lunar tide, assumes that the wave field and quasi-geostrophic flow have comparable spatial scales and neglects nonlinear wave–wave dynamics. As a result the hydrostatic wave equation is a reduced model applicable to the propagation of large-scale internal tides through the inhomogeneous and moving ocean. A numerical comparison with the linearized and hydrostatic Boussinesq equations demonstrates the validity of the hydrostatic wave equation model and illustrates how the model fails when the quasi-geostrophic flow is too strong and the wave frequency is too close to inertial. The hydrostatic wave equation provides a first step toward a coupled model for energy transfer between oceanic internal tides and quasi-geostrophic eddies and currents.
doi_str_mv 10.1017/jfm.2017.509
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1975068007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2017_509</cupid><sourcerecordid>1975068007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-11c25ad5f837cd503d369e26b9eec0127ce034fb2f8755d386df41ce61fc9f73</originalsourceid><addsrcrecordid>eNptkDtrwzAUhUVpoWnarT9A0LV29bAlewyhLwh0ya4qejgOtuVIMiX_vjLJ0KHTvcN3DocPgEeMcowwfznYPifpyUtUX4EFLlidcVaU12CBECEZxgTdgrsQDghhimq-AN-rAcpw6sfoYqtg77TpoHUexr2Bo3ejbGRs3QCdhU4ZOSSoHaLxg-xgbLUJifRuavbwOMnQZo1xIabcPoG2cz_34MbKLpiHy12C7dvrdv2Rbb7eP9erTaYoq2KapkgpdWkrypUuEdWU1YawXW2MQphwZRAt7I7YipelphXTtsDKMGxVbTldgqdzbdp8nEyI4uCmeWQQuOYlYhVCM_V8ppR3IXhjxejbXvqTwEjMCkVSKGaFIilMeH7BZb_zrW7Mn9b_Ar_eP3Tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975068007</pqid></control><display><type>article</type><title>An asymptotic model for the propagation of oceanic internal tides through quasi-geostrophic flow</title><source>Cambridge University Press:Jisc Collections:Cambridge University Press Read and Publish Agreement 2021-24 (Reading list)</source><creator>Wagner, G. L. ; Ferrando, G. ; Young, W. R.</creator><creatorcontrib>Wagner, G. L. ; Ferrando, G. ; Young, W. R.</creatorcontrib><description>We derive a time-averaged ‘hydrostatic wave equation’ from the hydrostatic Boussinesq equations that describes the propagation of inertia–gravity internal waves through quasi-geostrophic flow. The derivation uses a multiple-scale asymptotic method to isolate wave field evolution over intervals much longer than a wave period, assumes the wave field has a well-defined non-inertial frequency such as that of the mid-latitude semi-diurnal lunar tide, assumes that the wave field and quasi-geostrophic flow have comparable spatial scales and neglects nonlinear wave–wave dynamics. As a result the hydrostatic wave equation is a reduced model applicable to the propagation of large-scale internal tides through the inhomogeneous and moving ocean. A numerical comparison with the linearized and hydrostatic Boussinesq equations demonstrates the validity of the hydrostatic wave equation model and illustrates how the model fails when the quasi-geostrophic flow is too strong and the wave frequency is too close to inertial. The hydrostatic wave equation provides a first step toward a coupled model for energy transfer between oceanic internal tides and quasi-geostrophic eddies and currents.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2017.509</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Asymptotic methods ; Boussinesq approximation ; Boussinesq equations ; Dynamics ; Eddies ; Energy ; Energy transfer ; Fluid mechanics ; Geostrophic flow ; Gravitation ; Gravitational waves ; Gravity ; Inertia ; Internal tides ; Internal waves ; Lunar tides ; Mathematical models ; Nonlinear waves ; Ocean currents ; Ordinary differential equations ; Propagation ; Tidal dynamics ; Tidal energy ; Tides ; Vortices ; Wave dynamics ; Wave equations ; Wave frequency ; Wave period ; Wave propagation</subject><ispartof>Journal of fluid mechanics, 2017-10, Vol.828, p.779-811</ispartof><rights>2017 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-11c25ad5f837cd503d369e26b9eec0127ce034fb2f8755d386df41ce61fc9f73</citedby><cites>FETCH-LOGICAL-c368t-11c25ad5f837cd503d369e26b9eec0127ce034fb2f8755d386df41ce61fc9f73</cites><orcidid>0000-0001-5317-2445 ; 0000-0002-1842-3197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112017005092/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Wagner, G. L.</creatorcontrib><creatorcontrib>Ferrando, G.</creatorcontrib><creatorcontrib>Young, W. R.</creatorcontrib><title>An asymptotic model for the propagation of oceanic internal tides through quasi-geostrophic flow</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We derive a time-averaged ‘hydrostatic wave equation’ from the hydrostatic Boussinesq equations that describes the propagation of inertia–gravity internal waves through quasi-geostrophic flow. The derivation uses a multiple-scale asymptotic method to isolate wave field evolution over intervals much longer than a wave period, assumes the wave field has a well-defined non-inertial frequency such as that of the mid-latitude semi-diurnal lunar tide, assumes that the wave field and quasi-geostrophic flow have comparable spatial scales and neglects nonlinear wave–wave dynamics. As a result the hydrostatic wave equation is a reduced model applicable to the propagation of large-scale internal tides through the inhomogeneous and moving ocean. A numerical comparison with the linearized and hydrostatic Boussinesq equations demonstrates the validity of the hydrostatic wave equation model and illustrates how the model fails when the quasi-geostrophic flow is too strong and the wave frequency is too close to inertial. The hydrostatic wave equation provides a first step toward a coupled model for energy transfer between oceanic internal tides and quasi-geostrophic eddies and currents.</description><subject>Asymptotic methods</subject><subject>Boussinesq approximation</subject><subject>Boussinesq equations</subject><subject>Dynamics</subject><subject>Eddies</subject><subject>Energy</subject><subject>Energy transfer</subject><subject>Fluid mechanics</subject><subject>Geostrophic flow</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>Gravity</subject><subject>Inertia</subject><subject>Internal tides</subject><subject>Internal waves</subject><subject>Lunar tides</subject><subject>Mathematical models</subject><subject>Nonlinear waves</subject><subject>Ocean currents</subject><subject>Ordinary differential equations</subject><subject>Propagation</subject><subject>Tidal dynamics</subject><subject>Tidal energy</subject><subject>Tides</subject><subject>Vortices</subject><subject>Wave dynamics</subject><subject>Wave equations</subject><subject>Wave frequency</subject><subject>Wave period</subject><subject>Wave propagation</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkDtrwzAUhUVpoWnarT9A0LV29bAlewyhLwh0ya4qejgOtuVIMiX_vjLJ0KHTvcN3DocPgEeMcowwfznYPifpyUtUX4EFLlidcVaU12CBECEZxgTdgrsQDghhimq-AN-rAcpw6sfoYqtg77TpoHUexr2Bo3ejbGRs3QCdhU4ZOSSoHaLxg-xgbLUJifRuavbwOMnQZo1xIabcPoG2cz_34MbKLpiHy12C7dvrdv2Rbb7eP9erTaYoq2KapkgpdWkrypUuEdWU1YawXW2MQphwZRAt7I7YipelphXTtsDKMGxVbTldgqdzbdp8nEyI4uCmeWQQuOYlYhVCM_V8ppR3IXhjxejbXvqTwEjMCkVSKGaFIilMeH7BZb_zrW7Mn9b_Ar_eP3Tw</recordid><startdate>20171010</startdate><enddate>20171010</enddate><creator>Wagner, G. L.</creator><creator>Ferrando, G.</creator><creator>Young, W. R.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-5317-2445</orcidid><orcidid>https://orcid.org/0000-0002-1842-3197</orcidid></search><sort><creationdate>20171010</creationdate><title>An asymptotic model for the propagation of oceanic internal tides through quasi-geostrophic flow</title><author>Wagner, G. L. ; Ferrando, G. ; Young, W. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-11c25ad5f837cd503d369e26b9eec0127ce034fb2f8755d386df41ce61fc9f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Asymptotic methods</topic><topic>Boussinesq approximation</topic><topic>Boussinesq equations</topic><topic>Dynamics</topic><topic>Eddies</topic><topic>Energy</topic><topic>Energy transfer</topic><topic>Fluid mechanics</topic><topic>Geostrophic flow</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>Gravity</topic><topic>Inertia</topic><topic>Internal tides</topic><topic>Internal waves</topic><topic>Lunar tides</topic><topic>Mathematical models</topic><topic>Nonlinear waves</topic><topic>Ocean currents</topic><topic>Ordinary differential equations</topic><topic>Propagation</topic><topic>Tidal dynamics</topic><topic>Tidal energy</topic><topic>Tides</topic><topic>Vortices</topic><topic>Wave dynamics</topic><topic>Wave equations</topic><topic>Wave frequency</topic><topic>Wave period</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagner, G. L.</creatorcontrib><creatorcontrib>Ferrando, G.</creatorcontrib><creatorcontrib>Young, W. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagner, G. L.</au><au>Ferrando, G.</au><au>Young, W. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An asymptotic model for the propagation of oceanic internal tides through quasi-geostrophic flow</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2017-10-10</date><risdate>2017</risdate><volume>828</volume><spage>779</spage><epage>811</epage><pages>779-811</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We derive a time-averaged ‘hydrostatic wave equation’ from the hydrostatic Boussinesq equations that describes the propagation of inertia–gravity internal waves through quasi-geostrophic flow. The derivation uses a multiple-scale asymptotic method to isolate wave field evolution over intervals much longer than a wave period, assumes the wave field has a well-defined non-inertial frequency such as that of the mid-latitude semi-diurnal lunar tide, assumes that the wave field and quasi-geostrophic flow have comparable spatial scales and neglects nonlinear wave–wave dynamics. As a result the hydrostatic wave equation is a reduced model applicable to the propagation of large-scale internal tides through the inhomogeneous and moving ocean. A numerical comparison with the linearized and hydrostatic Boussinesq equations demonstrates the validity of the hydrostatic wave equation model and illustrates how the model fails when the quasi-geostrophic flow is too strong and the wave frequency is too close to inertial. The hydrostatic wave equation provides a first step toward a coupled model for energy transfer between oceanic internal tides and quasi-geostrophic eddies and currents.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2017.509</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0001-5317-2445</orcidid><orcidid>https://orcid.org/0000-0002-1842-3197</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2017-10, Vol.828, p.779-811
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1975068007
source Cambridge University Press:Jisc Collections:Cambridge University Press Read and Publish Agreement 2021-24 (Reading list)
subjects Asymptotic methods
Boussinesq approximation
Boussinesq equations
Dynamics
Eddies
Energy
Energy transfer
Fluid mechanics
Geostrophic flow
Gravitation
Gravitational waves
Gravity
Inertia
Internal tides
Internal waves
Lunar tides
Mathematical models
Nonlinear waves
Ocean currents
Ordinary differential equations
Propagation
Tidal dynamics
Tidal energy
Tides
Vortices
Wave dynamics
Wave equations
Wave frequency
Wave period
Wave propagation
title An asymptotic model for the propagation of oceanic internal tides through quasi-geostrophic flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A38%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20asymptotic%20model%20for%20the%20propagation%20of%20oceanic%20internal%20tides%20through%20quasi-geostrophic%20flow&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Wagner,%20G.%20L.&rft.date=2017-10-10&rft.volume=828&rft.spage=779&rft.epage=811&rft.pages=779-811&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2017.509&rft_dat=%3Cproquest_cross%3E1975068007%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-11c25ad5f837cd503d369e26b9eec0127ce034fb2f8755d386df41ce61fc9f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1975068007&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2017_509&rfr_iscdi=true