Loading…
An asymptotic model for the propagation of oceanic internal tides through quasi-geostrophic flow
We derive a time-averaged ‘hydrostatic wave equation’ from the hydrostatic Boussinesq equations that describes the propagation of inertia–gravity internal waves through quasi-geostrophic flow. The derivation uses a multiple-scale asymptotic method to isolate wave field evolution over intervals much...
Saved in:
Published in: | Journal of fluid mechanics 2017-10, Vol.828, p.779-811 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-11c25ad5f837cd503d369e26b9eec0127ce034fb2f8755d386df41ce61fc9f73 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-11c25ad5f837cd503d369e26b9eec0127ce034fb2f8755d386df41ce61fc9f73 |
container_end_page | 811 |
container_issue | |
container_start_page | 779 |
container_title | Journal of fluid mechanics |
container_volume | 828 |
creator | Wagner, G. L. Ferrando, G. Young, W. R. |
description | We derive a time-averaged ‘hydrostatic wave equation’ from the hydrostatic Boussinesq equations that describes the propagation of inertia–gravity internal waves through quasi-geostrophic flow. The derivation uses a multiple-scale asymptotic method to isolate wave field evolution over intervals much longer than a wave period, assumes the wave field has a well-defined non-inertial frequency such as that of the mid-latitude semi-diurnal lunar tide, assumes that the wave field and quasi-geostrophic flow have comparable spatial scales and neglects nonlinear wave–wave dynamics. As a result the hydrostatic wave equation is a reduced model applicable to the propagation of large-scale internal tides through the inhomogeneous and moving ocean. A numerical comparison with the linearized and hydrostatic Boussinesq equations demonstrates the validity of the hydrostatic wave equation model and illustrates how the model fails when the quasi-geostrophic flow is too strong and the wave frequency is too close to inertial. The hydrostatic wave equation provides a first step toward a coupled model for energy transfer between oceanic internal tides and quasi-geostrophic eddies and currents. |
doi_str_mv | 10.1017/jfm.2017.509 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1975068007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2017_509</cupid><sourcerecordid>1975068007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-11c25ad5f837cd503d369e26b9eec0127ce034fb2f8755d386df41ce61fc9f73</originalsourceid><addsrcrecordid>eNptkDtrwzAUhUVpoWnarT9A0LV29bAlewyhLwh0ya4qejgOtuVIMiX_vjLJ0KHTvcN3DocPgEeMcowwfznYPifpyUtUX4EFLlidcVaU12CBECEZxgTdgrsQDghhimq-AN-rAcpw6sfoYqtg77TpoHUexr2Bo3ejbGRs3QCdhU4ZOSSoHaLxg-xgbLUJifRuavbwOMnQZo1xIabcPoG2cz_34MbKLpiHy12C7dvrdv2Rbb7eP9erTaYoq2KapkgpdWkrypUuEdWU1YawXW2MQphwZRAt7I7YipelphXTtsDKMGxVbTldgqdzbdp8nEyI4uCmeWQQuOYlYhVCM_V8ppR3IXhjxejbXvqTwEjMCkVSKGaFIilMeH7BZb_zrW7Mn9b_Ar_eP3Tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975068007</pqid></control><display><type>article</type><title>An asymptotic model for the propagation of oceanic internal tides through quasi-geostrophic flow</title><source>Cambridge University Press:Jisc Collections:Cambridge University Press Read and Publish Agreement 2021-24 (Reading list)</source><creator>Wagner, G. L. ; Ferrando, G. ; Young, W. R.</creator><creatorcontrib>Wagner, G. L. ; Ferrando, G. ; Young, W. R.</creatorcontrib><description>We derive a time-averaged ‘hydrostatic wave equation’ from the hydrostatic Boussinesq equations that describes the propagation of inertia–gravity internal waves through quasi-geostrophic flow. The derivation uses a multiple-scale asymptotic method to isolate wave field evolution over intervals much longer than a wave period, assumes the wave field has a well-defined non-inertial frequency such as that of the mid-latitude semi-diurnal lunar tide, assumes that the wave field and quasi-geostrophic flow have comparable spatial scales and neglects nonlinear wave–wave dynamics. As a result the hydrostatic wave equation is a reduced model applicable to the propagation of large-scale internal tides through the inhomogeneous and moving ocean. A numerical comparison with the linearized and hydrostatic Boussinesq equations demonstrates the validity of the hydrostatic wave equation model and illustrates how the model fails when the quasi-geostrophic flow is too strong and the wave frequency is too close to inertial. The hydrostatic wave equation provides a first step toward a coupled model for energy transfer between oceanic internal tides and quasi-geostrophic eddies and currents.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2017.509</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Asymptotic methods ; Boussinesq approximation ; Boussinesq equations ; Dynamics ; Eddies ; Energy ; Energy transfer ; Fluid mechanics ; Geostrophic flow ; Gravitation ; Gravitational waves ; Gravity ; Inertia ; Internal tides ; Internal waves ; Lunar tides ; Mathematical models ; Nonlinear waves ; Ocean currents ; Ordinary differential equations ; Propagation ; Tidal dynamics ; Tidal energy ; Tides ; Vortices ; Wave dynamics ; Wave equations ; Wave frequency ; Wave period ; Wave propagation</subject><ispartof>Journal of fluid mechanics, 2017-10, Vol.828, p.779-811</ispartof><rights>2017 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-11c25ad5f837cd503d369e26b9eec0127ce034fb2f8755d386df41ce61fc9f73</citedby><cites>FETCH-LOGICAL-c368t-11c25ad5f837cd503d369e26b9eec0127ce034fb2f8755d386df41ce61fc9f73</cites><orcidid>0000-0001-5317-2445 ; 0000-0002-1842-3197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112017005092/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Wagner, G. L.</creatorcontrib><creatorcontrib>Ferrando, G.</creatorcontrib><creatorcontrib>Young, W. R.</creatorcontrib><title>An asymptotic model for the propagation of oceanic internal tides through quasi-geostrophic flow</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We derive a time-averaged ‘hydrostatic wave equation’ from the hydrostatic Boussinesq equations that describes the propagation of inertia–gravity internal waves through quasi-geostrophic flow. The derivation uses a multiple-scale asymptotic method to isolate wave field evolution over intervals much longer than a wave period, assumes the wave field has a well-defined non-inertial frequency such as that of the mid-latitude semi-diurnal lunar tide, assumes that the wave field and quasi-geostrophic flow have comparable spatial scales and neglects nonlinear wave–wave dynamics. As a result the hydrostatic wave equation is a reduced model applicable to the propagation of large-scale internal tides through the inhomogeneous and moving ocean. A numerical comparison with the linearized and hydrostatic Boussinesq equations demonstrates the validity of the hydrostatic wave equation model and illustrates how the model fails when the quasi-geostrophic flow is too strong and the wave frequency is too close to inertial. The hydrostatic wave equation provides a first step toward a coupled model for energy transfer between oceanic internal tides and quasi-geostrophic eddies and currents.</description><subject>Asymptotic methods</subject><subject>Boussinesq approximation</subject><subject>Boussinesq equations</subject><subject>Dynamics</subject><subject>Eddies</subject><subject>Energy</subject><subject>Energy transfer</subject><subject>Fluid mechanics</subject><subject>Geostrophic flow</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>Gravity</subject><subject>Inertia</subject><subject>Internal tides</subject><subject>Internal waves</subject><subject>Lunar tides</subject><subject>Mathematical models</subject><subject>Nonlinear waves</subject><subject>Ocean currents</subject><subject>Ordinary differential equations</subject><subject>Propagation</subject><subject>Tidal dynamics</subject><subject>Tidal energy</subject><subject>Tides</subject><subject>Vortices</subject><subject>Wave dynamics</subject><subject>Wave equations</subject><subject>Wave frequency</subject><subject>Wave period</subject><subject>Wave propagation</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkDtrwzAUhUVpoWnarT9A0LV29bAlewyhLwh0ya4qejgOtuVIMiX_vjLJ0KHTvcN3DocPgEeMcowwfznYPifpyUtUX4EFLlidcVaU12CBECEZxgTdgrsQDghhimq-AN-rAcpw6sfoYqtg77TpoHUexr2Bo3ejbGRs3QCdhU4ZOSSoHaLxg-xgbLUJifRuavbwOMnQZo1xIabcPoG2cz_34MbKLpiHy12C7dvrdv2Rbb7eP9erTaYoq2KapkgpdWkrypUuEdWU1YawXW2MQphwZRAt7I7YipelphXTtsDKMGxVbTldgqdzbdp8nEyI4uCmeWQQuOYlYhVCM_V8ppR3IXhjxejbXvqTwEjMCkVSKGaFIilMeH7BZb_zrW7Mn9b_Ar_eP3Tw</recordid><startdate>20171010</startdate><enddate>20171010</enddate><creator>Wagner, G. L.</creator><creator>Ferrando, G.</creator><creator>Young, W. R.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-5317-2445</orcidid><orcidid>https://orcid.org/0000-0002-1842-3197</orcidid></search><sort><creationdate>20171010</creationdate><title>An asymptotic model for the propagation of oceanic internal tides through quasi-geostrophic flow</title><author>Wagner, G. L. ; Ferrando, G. ; Young, W. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-11c25ad5f837cd503d369e26b9eec0127ce034fb2f8755d386df41ce61fc9f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Asymptotic methods</topic><topic>Boussinesq approximation</topic><topic>Boussinesq equations</topic><topic>Dynamics</topic><topic>Eddies</topic><topic>Energy</topic><topic>Energy transfer</topic><topic>Fluid mechanics</topic><topic>Geostrophic flow</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>Gravity</topic><topic>Inertia</topic><topic>Internal tides</topic><topic>Internal waves</topic><topic>Lunar tides</topic><topic>Mathematical models</topic><topic>Nonlinear waves</topic><topic>Ocean currents</topic><topic>Ordinary differential equations</topic><topic>Propagation</topic><topic>Tidal dynamics</topic><topic>Tidal energy</topic><topic>Tides</topic><topic>Vortices</topic><topic>Wave dynamics</topic><topic>Wave equations</topic><topic>Wave frequency</topic><topic>Wave period</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagner, G. L.</creatorcontrib><creatorcontrib>Ferrando, G.</creatorcontrib><creatorcontrib>Young, W. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagner, G. L.</au><au>Ferrando, G.</au><au>Young, W. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An asymptotic model for the propagation of oceanic internal tides through quasi-geostrophic flow</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2017-10-10</date><risdate>2017</risdate><volume>828</volume><spage>779</spage><epage>811</epage><pages>779-811</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We derive a time-averaged ‘hydrostatic wave equation’ from the hydrostatic Boussinesq equations that describes the propagation of inertia–gravity internal waves through quasi-geostrophic flow. The derivation uses a multiple-scale asymptotic method to isolate wave field evolution over intervals much longer than a wave period, assumes the wave field has a well-defined non-inertial frequency such as that of the mid-latitude semi-diurnal lunar tide, assumes that the wave field and quasi-geostrophic flow have comparable spatial scales and neglects nonlinear wave–wave dynamics. As a result the hydrostatic wave equation is a reduced model applicable to the propagation of large-scale internal tides through the inhomogeneous and moving ocean. A numerical comparison with the linearized and hydrostatic Boussinesq equations demonstrates the validity of the hydrostatic wave equation model and illustrates how the model fails when the quasi-geostrophic flow is too strong and the wave frequency is too close to inertial. The hydrostatic wave equation provides a first step toward a coupled model for energy transfer between oceanic internal tides and quasi-geostrophic eddies and currents.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2017.509</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0001-5317-2445</orcidid><orcidid>https://orcid.org/0000-0002-1842-3197</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2017-10, Vol.828, p.779-811 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_1975068007 |
source | Cambridge University Press:Jisc Collections:Cambridge University Press Read and Publish Agreement 2021-24 (Reading list) |
subjects | Asymptotic methods Boussinesq approximation Boussinesq equations Dynamics Eddies Energy Energy transfer Fluid mechanics Geostrophic flow Gravitation Gravitational waves Gravity Inertia Internal tides Internal waves Lunar tides Mathematical models Nonlinear waves Ocean currents Ordinary differential equations Propagation Tidal dynamics Tidal energy Tides Vortices Wave dynamics Wave equations Wave frequency Wave period Wave propagation |
title | An asymptotic model for the propagation of oceanic internal tides through quasi-geostrophic flow |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A38%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20asymptotic%20model%20for%20the%20propagation%20of%20oceanic%20internal%20tides%20through%20quasi-geostrophic%20flow&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Wagner,%20G.%20L.&rft.date=2017-10-10&rft.volume=828&rft.spage=779&rft.epage=811&rft.pages=779-811&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2017.509&rft_dat=%3Cproquest_cross%3E1975068007%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-11c25ad5f837cd503d369e26b9eec0127ce034fb2f8755d386df41ce61fc9f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1975068007&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2017_509&rfr_iscdi=true |