Loading…

Friction and Wear Performances of Cathodic Arc Ion Plated TiAlSiN Coating under Oil Lubricated Condition

TiAlSiN coating was deposited on H13 hot work mould steel using cathodic arc ion plating(CAIP). The surface-interface morphologies and phases of the obtained coating were analyzed using field emission scanning electron microscopy(FESEM) and X-ray diffraction(XRD), respectively, and the morphologies,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Wuhan University of Technology. Materials science edition 2017-12, Vol.32 (6), p.1301-1305
Main Authors: Shen, Hui, Kong, Weicheng, Tang, Chengjian, Li, Baomin, Kong, Dejun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:TiAlSiN coating was deposited on H13 hot work mould steel using cathodic arc ion plating(CAIP). The surface-interface morphologies and phases of the obtained coating were analyzed using field emission scanning electron microscopy(FESEM) and X-ray diffraction(XRD), respectively, and the morphologies, distributions of chemical elements and profiles of worn tracks were also researched using scanning electron microscopy(SEM), energy disperse spectroscopy(EDS), and optical microscope(OM), respectively. The friction-wear performances of TiAlSiN coating under oil lubricated and dry fiction conditions were investigated, and the wear mechanisms of TiAlSiN coating were discussed. The experimental results show that the coating is primarily composed of(Ti, Al)N, AlTiN, and TiN hard phases, Si_3N_4 exists between the(Ti, Al)N crystal grains, increasing the coating microhardness to 3200 HV. The TiAlSiN coating has excellent performances of reducing friction and wear resistance, the average coefficient of friction(COF) of TiAlSiN coating under oil lubricated condition is only 0.05, lowered than the average COF of 0.211 under dry friction condition, the wear rate decreases by about 81.2% compared with that under dry friction condition. The wear mechanism of TiAlSiN coating under oil lubricated and dry friction conditions is composed of abrasive wear, fatigue wear, and abrasive wear, respectively. The internal friction of oil lubrication is a main factor of decreasing fatigue wear.
ISSN:1000-2413
1993-0437
DOI:10.1007/s11595-017-1745-0