Loading…

Consideration of the Role of Plasma in a Plasma-Coupled Selective Catalytic Reduction of Nitrogen Oxides with a Hydrocarbon Reducing Agent

The purpose of this study is to explain how plasma improves the performance of selective catalytic reduction (SCR) of nitrogen oxides (NOx) with a hydrocarbon reducing agent. In the plasma-coupled SCR process, NOx reduction was performed with n-heptane as a reducing agent over Ag/γ-Al2O3 as a cataly...

Full description

Saved in:
Bibliographic Details
Published in:Catalysts 2017-11, Vol.7 (11), p.325
Main Authors: Lee, Byeong, Kang, Ho-Chul, Jo, Jin, Mok, Young
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The purpose of this study is to explain how plasma improves the performance of selective catalytic reduction (SCR) of nitrogen oxides (NOx) with a hydrocarbon reducing agent. In the plasma-coupled SCR process, NOx reduction was performed with n-heptane as a reducing agent over Ag/γ-Al2O3 as a catalyst. We found that the plasma decomposes n-heptane into several oxygen-containing products such as acetaldehyde, propionaldehyde and butyraldehyde, which are more reactive than the parent molecule n-heptane in the SCR process. Separate sets of experiments using acetaldehyde, propionaldehyde and butyraldehyde, one by one, as a reductant in the absence of plasma, have clearly shown that the presence of these partially oxidized compounds greatly enhanced the NOx conversion. The higher the discharge voltage, the more the amounts of such partially oxidized products. The oxidative species produced by the plasma easily converted NO into NO2, but the increase of the NO2 fraction was found to decrease the NOx conversion. Consequently, it can be concluded that the main role of plasma in the SCR process is to produce partially oxidized compounds (aldehydes), having better reducing power. The catalyst-alone NOx removal efficiency with n-heptane at 250 °C was measured to be less than 8%, but it increased to 99% in the presence of acetaldehyde at the same temperature. The NOx removal efficiency with the aldehyde reducing agent was higher as the number of carbons in the aldehyde was more; for example, the NOx removal efficiencies at 200 °C with butyraldehyde, propionaldehyde and acetaldehyde were measured to be 83.5%, 58.0% and 61.5%, respectively, which were far above the value (3%) obtained with n-heptane.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal7110325