Loading…

The Effect of Annealing Time on the Structural and Optical Properties of ZnAl2O4:0.01% Cr3+ Nanophosphor Prepared via the Sol–Gel Method

Zinc aluminate (ZnAl 2 O 4 ) host and 0.01% Cr 3+ doped were successfully prepared using the sol–gel method. The annealing time (AT) was varied in the range of 0.5–19 h. The x-ray diffraction results showed that the AT does not affect the crystal structure of the prepared powders. Scanning electron...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2018, Vol.47 (1), p.521-529
Main Authors: Motloung, S. V., Motloung, S. J., Swart, H. C., Hlatshwayo, T. T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c289t-72f5b81693aef58459b678e7b3ec01b2ed6e9f583e0c5529deef1dbad9f3ee283
cites cdi_FETCH-LOGICAL-c289t-72f5b81693aef58459b678e7b3ec01b2ed6e9f583e0c5529deef1dbad9f3ee283
container_end_page 529
container_issue 1
container_start_page 521
container_title Journal of electronic materials
container_volume 47
creator Motloung, S. V.
Motloung, S. J.
Swart, H. C.
Hlatshwayo, T. T.
description Zinc aluminate (ZnAl 2 O 4 ) host and 0.01% Cr 3+ doped were successfully prepared using the sol–gel method. The annealing time (AT) was varied in the range of 0.5–19 h. The x-ray diffraction results showed that the AT does not affect the crystal structure of the prepared powders. Scanning electron microscopy (SEM) results showed that the morphology of the prepared nanophosphors was influenced by the AT. Energy dispersive x-ray spectroscopy (EDS) confirmed the homogeneous distribution of the constituent elements. Transmission electron microscopy (TEM) suggested that the average crystallites sizes of the ZnAl 2 O 4 to be ~20 nm. Ultraviolet–visible (UV–Vis) spectroscopy results revealed that the bandgap ( E g ) of the prepared nanophosphor can be tuned by varying the AT. The emission peak at 390 nm is attributed to the intrinsic defects within the host material bandgap. The emission peak at 572 nm is attributed to both contribution from the host and Cr 3+ ( 4 T 1  →  4 A 2 ) transition. The maximum PL intensity was observed from the samples annealed for 3 h. The International Commission on Illumination (CIE) chromaticity diagram showed a slight shift on the blue emission with an increase in AT.
doi_str_mv 10.1007/s11664-017-5800-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1979948058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1979948058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-72f5b81693aef58459b678e7b3ec01b2ed6e9f583e0c5529deef1dbad9f3ee283</originalsourceid><addsrcrecordid>eNp1kM9rFDEUx4NYcG39A7wFxJNMzZtMMom3ZaltoboFVxAvITPz0p0yTcYkK3jz7NX_0L_ELOPBSw-P9-D748GHkJfAzoGx9m0CkLKpGLSVUIxV8glZgWh4BUp-eUpWjEuoRM3FM_I8pXvGQICCFfm12yO9cA77TIOja-_RTqO_o7vxAWnwNBf9U46HPh-inaj1A93OeezLfRvDjDGPmI7Rr3491dvmHTtn8JpuIn9DP1of5n1IZWJx42wjDvT7aJfWMP35-fsSJ_oB8z4MZ-TE2Snhi3_7lHx-f7HbXFU328vrzfqm6mulc9XWTnQKpOYWnVCN0J1sFbYdx55BV-MgUReBI-uFqPWA6GDo7KAdR6wVPyWvlt45hm8HTNnch0P05aUB3WrdKCaOLlhcfQwpRXRmjuODjT8MMHNEbhbkpiA3R-RGlky9ZFLx-juM_zU_GvoLKXKEbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1979948058</pqid></control><display><type>article</type><title>The Effect of Annealing Time on the Structural and Optical Properties of ZnAl2O4:0.01% Cr3+ Nanophosphor Prepared via the Sol–Gel Method</title><source>Springer Nature</source><creator>Motloung, S. V. ; Motloung, S. J. ; Swart, H. C. ; Hlatshwayo, T. T.</creator><creatorcontrib>Motloung, S. V. ; Motloung, S. J. ; Swart, H. C. ; Hlatshwayo, T. T.</creatorcontrib><description>Zinc aluminate (ZnAl 2 O 4 ) host and 0.01% Cr 3+ doped were successfully prepared using the sol–gel method. The annealing time (AT) was varied in the range of 0.5–19 h. The x-ray diffraction results showed that the AT does not affect the crystal structure of the prepared powders. Scanning electron microscopy (SEM) results showed that the morphology of the prepared nanophosphors was influenced by the AT. Energy dispersive x-ray spectroscopy (EDS) confirmed the homogeneous distribution of the constituent elements. Transmission electron microscopy (TEM) suggested that the average crystallites sizes of the ZnAl 2 O 4 to be ~20 nm. Ultraviolet–visible (UV–Vis) spectroscopy results revealed that the bandgap ( E g ) of the prepared nanophosphor can be tuned by varying the AT. The emission peak at 390 nm is attributed to the intrinsic defects within the host material bandgap. The emission peak at 572 nm is attributed to both contribution from the host and Cr 3+ ( 4 T 1  →  4 A 2 ) transition. The maximum PL intensity was observed from the samples annealed for 3 h. The International Commission on Illumination (CIE) chromaticity diagram showed a slight shift on the blue emission with an increase in AT.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-017-5800-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Annealing ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chromaticity ; Crystal defects ; Crystal structure ; Crystallites ; Electron microscopy ; Electronics and Microelectronics ; Instrumentation ; Materials Science ; Nanophosphors ; Optical and Electronic Materials ; Optical properties ; Scanning electron microscopy ; Sol-gel processes ; Solid State Physics ; Spectrum analysis</subject><ispartof>Journal of electronic materials, 2018, Vol.47 (1), p.521-529</ispartof><rights>The Minerals, Metals &amp; Materials Society 2017</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-72f5b81693aef58459b678e7b3ec01b2ed6e9f583e0c5529deef1dbad9f3ee283</citedby><cites>FETCH-LOGICAL-c289t-72f5b81693aef58459b678e7b3ec01b2ed6e9f583e0c5529deef1dbad9f3ee283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Motloung, S. V.</creatorcontrib><creatorcontrib>Motloung, S. J.</creatorcontrib><creatorcontrib>Swart, H. C.</creatorcontrib><creatorcontrib>Hlatshwayo, T. T.</creatorcontrib><title>The Effect of Annealing Time on the Structural and Optical Properties of ZnAl2O4:0.01% Cr3+ Nanophosphor Prepared via the Sol–Gel Method</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Zinc aluminate (ZnAl 2 O 4 ) host and 0.01% Cr 3+ doped were successfully prepared using the sol–gel method. The annealing time (AT) was varied in the range of 0.5–19 h. The x-ray diffraction results showed that the AT does not affect the crystal structure of the prepared powders. Scanning electron microscopy (SEM) results showed that the morphology of the prepared nanophosphors was influenced by the AT. Energy dispersive x-ray spectroscopy (EDS) confirmed the homogeneous distribution of the constituent elements. Transmission electron microscopy (TEM) suggested that the average crystallites sizes of the ZnAl 2 O 4 to be ~20 nm. Ultraviolet–visible (UV–Vis) spectroscopy results revealed that the bandgap ( E g ) of the prepared nanophosphor can be tuned by varying the AT. The emission peak at 390 nm is attributed to the intrinsic defects within the host material bandgap. The emission peak at 572 nm is attributed to both contribution from the host and Cr 3+ ( 4 T 1  →  4 A 2 ) transition. The maximum PL intensity was observed from the samples annealed for 3 h. The International Commission on Illumination (CIE) chromaticity diagram showed a slight shift on the blue emission with an increase in AT.</description><subject>Annealing</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chromaticity</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Crystallites</subject><subject>Electron microscopy</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Nanophosphors</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Scanning electron microscopy</subject><subject>Sol-gel processes</subject><subject>Solid State Physics</subject><subject>Spectrum analysis</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM9rFDEUx4NYcG39A7wFxJNMzZtMMom3ZaltoboFVxAvITPz0p0yTcYkK3jz7NX_0L_ELOPBSw-P9-D748GHkJfAzoGx9m0CkLKpGLSVUIxV8glZgWh4BUp-eUpWjEuoRM3FM_I8pXvGQICCFfm12yO9cA77TIOja-_RTqO_o7vxAWnwNBf9U46HPh-inaj1A93OeezLfRvDjDGPmI7Rr3491dvmHTtn8JpuIn9DP1of5n1IZWJx42wjDvT7aJfWMP35-fsSJ_oB8z4MZ-TE2Snhi3_7lHx-f7HbXFU328vrzfqm6mulc9XWTnQKpOYWnVCN0J1sFbYdx55BV-MgUReBI-uFqPWA6GDo7KAdR6wVPyWvlt45hm8HTNnch0P05aUB3WrdKCaOLlhcfQwpRXRmjuODjT8MMHNEbhbkpiA3R-RGlky9ZFLx-juM_zU_GvoLKXKEbA</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Motloung, S. V.</creator><creator>Motloung, S. J.</creator><creator>Swart, H. C.</creator><creator>Hlatshwayo, T. T.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>2018</creationdate><title>The Effect of Annealing Time on the Structural and Optical Properties of ZnAl2O4:0.01% Cr3+ Nanophosphor Prepared via the Sol–Gel Method</title><author>Motloung, S. V. ; Motloung, S. J. ; Swart, H. C. ; Hlatshwayo, T. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-72f5b81693aef58459b678e7b3ec01b2ed6e9f583e0c5529deef1dbad9f3ee283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Annealing</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chromaticity</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Crystallites</topic><topic>Electron microscopy</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Nanophosphors</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Scanning electron microscopy</topic><topic>Sol-gel processes</topic><topic>Solid State Physics</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Motloung, S. V.</creatorcontrib><creatorcontrib>Motloung, S. J.</creatorcontrib><creatorcontrib>Swart, H. C.</creatorcontrib><creatorcontrib>Hlatshwayo, T. T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Motloung, S. V.</au><au>Motloung, S. J.</au><au>Swart, H. C.</au><au>Hlatshwayo, T. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of Annealing Time on the Structural and Optical Properties of ZnAl2O4:0.01% Cr3+ Nanophosphor Prepared via the Sol–Gel Method</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2018</date><risdate>2018</risdate><volume>47</volume><issue>1</issue><spage>521</spage><epage>529</epage><pages>521-529</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Zinc aluminate (ZnAl 2 O 4 ) host and 0.01% Cr 3+ doped were successfully prepared using the sol–gel method. The annealing time (AT) was varied in the range of 0.5–19 h. The x-ray diffraction results showed that the AT does not affect the crystal structure of the prepared powders. Scanning electron microscopy (SEM) results showed that the morphology of the prepared nanophosphors was influenced by the AT. Energy dispersive x-ray spectroscopy (EDS) confirmed the homogeneous distribution of the constituent elements. Transmission electron microscopy (TEM) suggested that the average crystallites sizes of the ZnAl 2 O 4 to be ~20 nm. Ultraviolet–visible (UV–Vis) spectroscopy results revealed that the bandgap ( E g ) of the prepared nanophosphor can be tuned by varying the AT. The emission peak at 390 nm is attributed to the intrinsic defects within the host material bandgap. The emission peak at 572 nm is attributed to both contribution from the host and Cr 3+ ( 4 T 1  →  4 A 2 ) transition. The maximum PL intensity was observed from the samples annealed for 3 h. The International Commission on Illumination (CIE) chromaticity diagram showed a slight shift on the blue emission with an increase in AT.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-017-5800-6</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2018, Vol.47 (1), p.521-529
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_1979948058
source Springer Nature
subjects Annealing
Characterization and Evaluation of Materials
Chemistry and Materials Science
Chromaticity
Crystal defects
Crystal structure
Crystallites
Electron microscopy
Electronics and Microelectronics
Instrumentation
Materials Science
Nanophosphors
Optical and Electronic Materials
Optical properties
Scanning electron microscopy
Sol-gel processes
Solid State Physics
Spectrum analysis
title The Effect of Annealing Time on the Structural and Optical Properties of ZnAl2O4:0.01% Cr3+ Nanophosphor Prepared via the Sol–Gel Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A02%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20Annealing%20Time%20on%20the%20Structural%20and%20Optical%20Properties%20of%20ZnAl2O4:0.01%25%20Cr3+%20Nanophosphor%20Prepared%20via%20the%20Sol%E2%80%93Gel%20Method&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Motloung,%20S.%20V.&rft.date=2018&rft.volume=47&rft.issue=1&rft.spage=521&rft.epage=529&rft.pages=521-529&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-017-5800-6&rft_dat=%3Cproquest_cross%3E1979948058%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-72f5b81693aef58459b678e7b3ec01b2ed6e9f583e0c5529deef1dbad9f3ee283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1979948058&rft_id=info:pmid/&rfr_iscdi=true