Loading…
Using the Lambert-W Function to Create a New Class of Warped Time-Frequency Representations
In this paper, we propose a new warping function to create a new class of warped time-frequency representations (TFRs). We provide the formula for the derivative warping function and its inverse which is defined using the Lambert-W function. Examples are provided demonstrating how the new warping fu...
Saved in:
Published in: | Circuits, systems, and signal processing systems, and signal processing, 2018-08, Vol.37 (8), p.3191-3205 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we propose a new warping function to create a new class of warped time-frequency representations (TFRs). We provide the formula for the derivative warping function and its inverse which is defined using the Lambert-W function. Examples are provided demonstrating how the new warping function can be successfully used on wide variety of nonlinear FM chirp signals to linearize their support in the warped time-frequency plane. An algorithm is proposed to optimize the parameter of the new warping function. We also formulate nonlinear FM chirp signals that are ideally matched to this new class of TFRs. These matched FM chirp signals have highly concentrated warped TFRs and no inner-interference terms. |
---|---|
ISSN: | 0278-081X 1531-5878 |
DOI: | 10.1007/s00034-017-0733-0 |