Loading…
Junctionless Nanosheet (3 nm) Poly-Si TFT: Electrical Characteristics and Superior Positive Gate Bias Stress Reliability
In this letter, a junctionless (JL) poly-Si thin-film transistor (TFT) with a 3-nm-thick nanosheet channel is successfully fabricated using the low-temperature atomic level etching process. An inversion-mode (IM) TFT is also prepared for performance comparison and reliability investigation of positi...
Saved in:
Published in: | IEEE electron device letters 2018-01, Vol.39 (1), p.8-11 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this letter, a junctionless (JL) poly-Si thin-film transistor (TFT) with a 3-nm-thick nanosheet channel is successfully fabricated using the low-temperature atomic level etching process. An inversion-mode (IM) TFT is also prepared for performance comparison and reliability investigation of positive gate bias stress (PGBS). In comparison with the IM-TFT, the JL-TFT exhibits superior PGBS reliability. The origin of the difference in degradation rates between the JL and IM-TFTs is ascribed to the different transport mechanisms and different gate dielectric fields under the same gate over-drive stress. Nanosheet JL-TFTs with a 3-nm channel thickness show excellent S.S (69 mV/decade) and extremely low off-current (1.93 fA). Results indicate that it is a promising candidate for low-power 3-D integrated circuits. |
---|---|
ISSN: | 0741-3106 1558-0563 |
DOI: | 10.1109/LED.2017.2779451 |