Loading…
Oxidative physiology of reproduction in a passerine bird: a field experiment
Organisms face resource trade-offs to support their parental effort and survival. The life-history oxidative stress hypothesis predicts that an individual's redox state modulates the trade-off between current and residual fitness, but this has seldom been tested experimentally in non-captive or...
Saved in:
Published in: | Behavioral ecology and sociobiology 2018-02, Vol.72 (2), p.1-14, Article 18 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Organisms face resource trade-offs to support their parental effort and survival. The life-history oxidative stress hypothesis predicts that an individual's redox state modulates the trade-off between current and residual fitness, but this has seldom been tested experimentally in non-captive organisms. In this study, we manipulated the brood size in breeding pairs of barn swallows (Hirundo rustica) and found that females tending enlarged broods had increased levels of plasma oxidative damage (malondialdehyde concentration). This effect, however, was not accompanied by either a depletion, or defensive upregulation in antioxidants (glutathione, total antioxidant capacity, and uric acid) that may explain the increase in oxidative damage. Brood size manipulation and the level of plasma oxidative damage during brood rearing are not translated into decreased annual return rate, which does not support the oxidative stress hypothesis of life-history trade-offs. On the contrary, we found that female's oxidative damage and total glutathione levels, an important intracellular non-enzymatic antioxidant measured at hatching decreased and correlated positively, respectively with annual return rate, suggesting that oxidative condition at hatching might be a more important contributor to fitness than the oxidative physiology measured during chick rearing. We also show that individual traits and ecological factors, such as the timing of breeding and the abundance of blood-sucking nest mites, correlated with the redox state of males and females during brood care. |
---|---|
ISSN: | 0340-5443 1432-0762 |
DOI: | 10.1007/s00265-017-2434-x |