Loading…

Synsedimentary broken‐foreland tectonics during the Paleogene in the Andes of NW Argentine: new evidence from regional to centimetre‐scale deformation features

Unravelling the spatiotemporal evolution of the Cenozoic Andean (Altiplano‐Puna) plateau has been one of the most intriguing problems of South American geology. Despite a number of investigations, the early deformation and uplift history of this area remained largely enigmatic. This paper analyses t...

Full description

Saved in:
Bibliographic Details
Published in:Basin research 2018-02, Vol.30 (S1), p.142-159
Main Authors: Montero‐López, Carolina, del Papa, Cecilia, Hongn, Fernando, Strecker, Manfred R., Aramayo, Alejandro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Unravelling the spatiotemporal evolution of the Cenozoic Andean (Altiplano‐Puna) plateau has been one of the most intriguing problems of South American geology. Despite a number of investigations, the early deformation and uplift history of this area remained largely enigmatic. This paper analyses the Paleogene tectono‐sedimentary history of the Casa Grande Basin, in the present‐day transition zone between the northern sector of the Puna Plateau and the northern part of the Argentine Eastern Cordillera. Our detailed mapping of synsedimentary structures records the onset of regional contractional deformation during the middle Eocene, revealing reactivation of Cretaceous extensional structures and the development of doubly vergent thrusts. This is in agreement with records from other southern parts of the Puna Plateau and the Eastern Cordillera. These observations indicate the existence of an Eocene broken foreland setting within the region, characterized by low‐lying compressional basins and ranges with spatially disparate sectors of deformation, which was subsequently subjected to regional uplift resulting in the attainment of present‐day elevations during the Neogene.
ISSN:0950-091X
1365-2117
DOI:10.1111/bre.12212