Loading…

Efficient Inelasticity-Separated Finite-Element Method for Material Nonlinearity Analysis

AbstractMaterial nonlinearity analyses are widely used to determine the safety of structural components or engineering structures. Although advanced computer hardware technology has considerably improved the computational performance of such analyses, large and complex emerging structures and expens...

Full description

Saved in:
Bibliographic Details
Published in:Journal of engineering mechanics 2018-04, Vol.144 (4)
Main Authors: Li, Gang, Yu, Ding-Hao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:AbstractMaterial nonlinearity analyses are widely used to determine the safety of structural components or engineering structures. Although advanced computer hardware technology has considerably improved the computational performance of such analyses, large and complex emerging structures and expensive computational process still attract the attention of researchers toward finding more efficient and accurate numerical solution methods. This paper combines an inelasticity-separated (IS) concept with the finite-element method (FEM) to establish a novel and efficient framework (IS-FEM) for structures with material nonlinear behavior that only occurs within certain small local domains. The IS concept presented in this paper begins by decomposing the strain on a nonlinear material into its linear-elastic and inelastic components and runs through the whole framework. Based on the principle of virtual work, a novel governing equation for structures with an IS form is derived by treating the decomposed inelastic strain as additional degrees of freedom. Moreover, the changing stiffness matrix in the classical FEM is expressed as the sum of the invariant global linear elastic stiffness matrix and another changing inelastic stiffness matrix with a small rank, and it represents the material nonlinearity of local domains so that the efficient solution method can be applied to perform nonlinear analyses via the mathematical Sherman–-Morrison–Woodbury (SMW) formula. Because the unchanging global stiffness matrix is used throughout the whole nonlinear analysis and the computational effort only focuses on a small dimension matrix that represents the local inelastic behavior, the efficiency of the proposed IS-FEM is improved greatly. The proposed method is validated against the results of classical FEM via three separate numerical examples and its value and potential for use in any material nonlinearity analyses are also demonstrated.
ISSN:0733-9399
1943-7889
DOI:10.1061/(ASCE)EM.1943-7889.0001426