Loading…
GAUSSIAN APPROXIMATION FOR HIGH DIMENSIONAL TIME SERIES
We consider the problem of approximating sums of high dimensional stationary time series by Gaussian vectors, using the framework of functional dependence measure. The validity of the Gaussian approximation depends on the sample size n, the dimension p, the moment condition and the dependence of the...
Saved in:
Published in: | The Annals of statistics 2017-10, Vol.45 (5), p.1895-1919 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the problem of approximating sums of high dimensional stationary time series by Gaussian vectors, using the framework of functional dependence measure. The validity of the Gaussian approximation depends on the sample size n, the dimension p, the moment condition and the dependence of the underlying processes. We also consider an estimator for long-run covariance matrices and study its convergence properties. Our results allow constructing simultaneous confidence intervals for mean vectors of high-dimensional time series with asymptotically correct coverage probabilities. As an application, we propose a Kolmogorov–Smirnov-type statistic for testing distributions of high-dimensional time series. |
---|---|
ISSN: | 0090-5364 2168-8966 |
DOI: | 10.1214/16-aos1512 |