Loading…
Short signed circuit covers of signed graphs
A signed graph G is a graph associated with a mapping σ: E(G)→{+1,−1}. An edge e∈E(G) is positive if σ(e)=1 and negative if σ(e)=−1. A circuit in G is balanced if it contains an even number of negative edges, and unbalanced otherwise. A barbell consists of two unbalanced circuits joined by a path. A...
Saved in:
Published in: | Discrete Applied Mathematics 2018-01, Vol.235, p.51-58 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A signed graph G is a graph associated with a mapping σ: E(G)→{+1,−1}. An edge e∈E(G) is positive if σ(e)=1 and negative if σ(e)=−1. A circuit in G is balanced if it contains an even number of negative edges, and unbalanced otherwise. A barbell consists of two unbalanced circuits joined by a path. A signed circuit of G is either a balanced circuit or a barbell. A signed graph is coverable if each edge is contained in some signed circuit. An oriented signed graph (bidirected graph) has a nowhere-zero integer flow if and only if it is coverable. A signed circuit cover of G is a collection F of signed circuits in G such that each edge e∈E(G) is contained in at least one signed circuit of F; The length of F is the sum of the lengths of the signed circuits in it. The minimum length of a signed circuit cover of G is denoted by scc(G). The first nontrivial bound on scc(G) was established by Máčajová et al., who proved that scc(G)≤11|E(G)| for every coverable signed graph G, which was recently improved by Cheng et al. to scc(G)≤143|E(G)|. In this paper, we prove that scc(G)≤256|E(G)| for every coverable signed graph G. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2017.10.002 |