Loading…

Substantial convection and precipitation enhancements by ultrafineaerosol particles

Ultrafine aerosol particles (smaller than 50 nanometers in diameter) have been thought to be too small to affect cloud formation. Fan et al. show that this is not the case. They studied the effect of urban pollution transported into the otherwise nearly pristine atmosphere of the Amazon. Condensatio...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2018-01, Vol.359 (6374), p.411-418
Main Authors: Fan, Jiwen, Rosenfeld, Daniel, Zhang, Yuwei, Giangrande, Scott E., Li, Zhanqing, Machado, Luiz A. T., Martin, Scot T., Yang, Yan, Wang, Jian, Artaxo, Paulo, Barbosa, Henrique M. J., Braga, Ramon C., Comstock, Jennifer M., Feng, Zhe, Gao, Wenhua, Gomes, Helber B., Mei, Fan, Pöhlker, Christopher, Pöhlker, Mira L., Pöschl, Ulrich, de Souza, Rodrigo A. F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ultrafine aerosol particles (smaller than 50 nanometers in diameter) have been thought to be too small to affect cloud formation. Fan et al. show that this is not the case. They studied the effect of urban pollution transported into the otherwise nearly pristine atmosphere of the Amazon. Condensational growth of water droplets around the tiny particles releases latent heat, thereby intensifying atmospheric convection. Thus, anthropogenic ultrafine aerosol particles may exert a more important influence on cloud formation processes than previously believed. Science , this issue p. 411 Water droplet condensation by ultrafine aerosol particles fuels more intense atmospheric convection. Aerosol-cloud interactions remain the largest uncertainty in climate projections. Ultrafine aerosol particles smaller than 50 nanometers (UAP
ISSN:0036-8075
1095-9203
DOI:10.1126/science.aan8461