Loading…
Local conservation laws, symmetries, and exact solutions for a Kudryashov‐Sinelshchikov equation
In this paper, we consider a Kudryashov‐Sinelshchikov equation that describes pressure waves in a mixture of a liquid and gas bubbles taking into consideration the viscosity of liquid and the heat transfer between liquid and gas bubbles. We show that this equation is rich in conservation laws. These...
Saved in:
Published in: | Mathematical methods in the applied sciences 2018-03, Vol.41 (4), p.1631-1641 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we consider a Kudryashov‐Sinelshchikov equation that describes pressure waves in a mixture of a liquid and gas bubbles taking into consideration the viscosity of liquid and the heat transfer between liquid and gas bubbles. We show that this equation is rich in conservation laws. These conservation laws have been found by using the direct method of the multipliers. We apply the Lie group method to derive the symmetries of this equation. Then, by using the optimal system of 1‐dimensional subalgebras we reduce the equation to ordinary differential equations. Finally, some exact wave solutions are obtained by applying the simplest equation method. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.4690 |