Loading…

Functional central limit theorems for stationary Hawkes processes and application to infinite-server queues

A univariate Hawkes process is a simple point process that is self-exciting and has a clustering effect. The intensity of this point process is given by the sum of a baseline intensity and another term that depends on the entire past history of the point process. Hawkes processes have wide applicati...

Full description

Saved in:
Bibliographic Details
Published in:Queueing systems 2018-10, Vol.90 (1-2), p.161-206
Main Authors: Gao, Xuefeng, Zhu, Lingjiong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A univariate Hawkes process is a simple point process that is self-exciting and has a clustering effect. The intensity of this point process is given by the sum of a baseline intensity and another term that depends on the entire past history of the point process. Hawkes processes have wide applications in finance, neuroscience, social networks, criminology, seismology, and many other fields. In this paper, we prove a functional central limit theorem for stationary Hawkes processes in the asymptotic regime where the baseline intensity is large. The limit is a non-Markovian Gaussian process with dependent increments. We use the resulting approximation to study an infinite-server queue with high-volume Hawkes traffic. We show that the queue length process can be approximated by a Gaussian process, for which we compute explicitly the covariance function and the steady-state distribution. We also extend our results to multivariate stationary Hawkes processes and establish limit theorems for infinite-server queues with multivariate Hawkes traffic.
ISSN:0257-0130
1572-9443
DOI:10.1007/s11134-018-9570-5