Loading…
Amorphous NiFeB nanoparticles realizing highly active and stable oxygen evolving reaction for water splitting
The development of highly efficient and inexpensive catalysts for oxygen evolving reactions (OERs) is extremely urgent for promoting the overall efficiency of water splitting. Herein we report the fabrication of a series of amorphous NiFeB nanoparticles with varying atomic ratios of Fe to (Ni + Fe)...
Saved in:
Published in: | Nano research 2018-03, Vol.11 (3), p.1664-1675 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The development of highly efficient and inexpensive catalysts for oxygen evolving reactions (OERs) is extremely urgent for promoting the overall efficiency of water splitting. Herein we report the fabrication of a series of amorphous NiFeB nanoparticles with varying atomic ratios of Fe to (Ni + Fe) (XFe) by a facile chemical-reduction method. The amorphous NiFeB (XFe=0.20) nanoparticles, combining the merits of in situ formation of borate-enriched NiFeOOH catalytic surface layers, intrinsic amorphous nanostructures, and an optimized degree of Fe doping, displayed highly active electrocatalytic performance towards the OER in a broad range of pH values (from alkaline to neutral conditions). The catalyst exhibited a relatively low overpotential of 216 mV with a Tafel slope of 40 mWdec on Ni foam and 251 mV with a Tafel slope of 43 mV/dec on glassy carbon at 10 mA/cm2 in a 1 M KOH solution, demonstrating much greater OER efficiency than that of commercial RuO2. Long-term stability testing of the OER performance of NiFeB (XFe = 0.20) by chronoamperometry (overpotential (η) = 320 mV) over 200 h revealed no evidence of degradation. Facile, scalable synthesis and highly active water oxidation make the NiFeB nanoparticles very attractive for OER electrocatalysis. |
---|---|
ISSN: | 1998-0124 1998-0000 |
DOI: | 10.1007/s12274-017-1783-0 |