Loading…
2,3,5,4'‑Tetrahydroxystilbene‑2‑O‑β‑D‑glucoside inhibits septic serum‑induced inflammatory injury via interfering with the ROS‑MAPK‑NF‑κB signaling pathway in pulmonary aortic endothelial cells
Sepsis is characterized by injury to the microvasculature and the microvascular endothelial cells, leading to barrier dysfunction. However, the specific role of injury in septic endothelial barrier dysfunction remains to be elucidated. In the present study, it was hypothesized that endothelial cell...
Saved in:
Published in: | International journal of molecular medicine 2018-03, Vol.41 (3), p.1643-1650 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sepsis is characterized by injury to the microvasculature and the microvascular endothelial cells, leading to barrier dysfunction. However, the specific role of injury in septic endothelial barrier dysfunction remains to be elucidated. In the present study, it was hypothesized that endothelial cell inflammatory injury is likely required for barrier dysfunction under septic conditions in vitro. 2,3,5,4′-Tetrahydroxysti lbene-2-O-β-D-glucoside (TSG), a compound extracted from Chinese herbs, is able to inhibit the inflammatory injury of septic-serum in endothelial cells. In the present study, cell viability was assayed by CCK-8 method; mRNA and protein expression was identified by RT-qPCR, western blot or Elisa, respectively and the production of reactive oxygen species was observed by a fluorescence microscope. The present study indicated that septic serum significantly decreased the cell viability of pulmonary aortic endothelial cells (PAECs) following co-cultivation for 6 h, which occurred in a time-dependent manner. TSG notably increased the viability of PAECs in a time- and concentration-dependent manner. Further investigations revealed that septic serum increased the secretion of interleukin (IL)-1β, IL-6 and C-reactive protein in PAECs, whereas pretreatment with TSG significantly decreased the secretion of these inflammatory factors. These data indicated that septic serum increased inflammatory injury to the PAECs, and TSG decreased this injury via the reactive oxygen species-mitogen-activated protein kinase-nuclear factor-κB signaling pathway. |
---|---|
ISSN: | 1107-3756 1791-244X |
DOI: | 10.3892/ijmm.2017.3329 |