Loading…
On applying support vector machines to a user authentication method using surface electromyogram signals
At present, mobile devices such as tablet-type PCs and smart phones have widely penetrated into our daily lives. Therefore, an authentication method that prevents shoulder surfing is needed. We are investigating a new user authentication method for mobile devices that uses surface electromyogram (s-...
Saved in:
Published in: | Artificial life and robotics 2018-03, Vol.23 (1), p.87-93 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-1d40a1611a91275d4f6e104fb73307ccfc9a9a6e285aabcb16fee1166c7a45413 |
---|---|
cites | cdi_FETCH-LOGICAL-c382t-1d40a1611a91275d4f6e104fb73307ccfc9a9a6e285aabcb16fee1166c7a45413 |
container_end_page | 93 |
container_issue | 1 |
container_start_page | 87 |
container_title | Artificial life and robotics |
container_volume | 23 |
creator | Yamaba, Hisaaki Kurogi, Tokiyoshi Aburada, Kentaro Kubota, Shin-Ichiro Katayama, Tetsuro Park, Mirang Okazaki, Naonobu |
description | At present, mobile devices such as tablet-type PCs and smart phones have widely penetrated into our daily lives. Therefore, an authentication method that prevents shoulder surfing is needed. We are investigating a new user authentication method for mobile devices that uses surface electromyogram (s-EMG) signals, not screen touching. The s-EMG signals, which are detected over the skin surface, are generated by the electrical activity of muscle fibers during contraction. Muscle movement can be differentiated by analyzing the s-EMG. Taking advantage of the characteristics, we proposed a method that uses a list of gestures as a password in the previous study. In this paper, we introduced support vector machines (SVM) for improvement of the method of identifying gestures. A series of experiments was carried out to evaluate the performance of the SVM based method as a gesture classifier and we also discussed its security. |
doi_str_mv | 10.1007/s10015-017-0404-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2008011972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2008011972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-1d40a1611a91275d4f6e104fb73307ccfc9a9a6e285aabcb16fee1166c7a45413</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7-Ad4CnqOZNk3aoyx-wcJe9Bxms-nHsm1qkgrrX2-WCp68zBuY9xsej5Bb4PfAuXoIaULBOCjGBRfs-4wsQIJgShTyPO0iz1mRVeUluQphz7lQXOYL0m4GiuN4OHZDQ8M0js5H-mVNdJ72aNpusIFGR5FOwXqKU2ztEDuDsXMD7W1s3S6dZtrXaCy1h4R71x9d47GnoWsGPIRrclEnsTe_uiQfz0_vq1e23ry8rR7XzORlFhnsBMcUHLCCTBU7UUsLXNRbledcGVObCiuUNisLxK3ZgqytBZDSKBSFgHxJ7ua_o3efkw1R793kTwl0xnnJASqVJRfMLuNdCN7WevRdj_6ogetToXouVKdC9alQ_Z2YbGZC8g6N9X-f_4d-AJ-heyc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2008011972</pqid></control><display><type>article</type><title>On applying support vector machines to a user authentication method using surface electromyogram signals</title><source>Springer Nature</source><creator>Yamaba, Hisaaki ; Kurogi, Tokiyoshi ; Aburada, Kentaro ; Kubota, Shin-Ichiro ; Katayama, Tetsuro ; Park, Mirang ; Okazaki, Naonobu</creator><creatorcontrib>Yamaba, Hisaaki ; Kurogi, Tokiyoshi ; Aburada, Kentaro ; Kubota, Shin-Ichiro ; Katayama, Tetsuro ; Park, Mirang ; Okazaki, Naonobu</creatorcontrib><description>At present, mobile devices such as tablet-type PCs and smart phones have widely penetrated into our daily lives. Therefore, an authentication method that prevents shoulder surfing is needed. We are investigating a new user authentication method for mobile devices that uses surface electromyogram (s-EMG) signals, not screen touching. The s-EMG signals, which are detected over the skin surface, are generated by the electrical activity of muscle fibers during contraction. Muscle movement can be differentiated by analyzing the s-EMG. Taking advantage of the characteristics, we proposed a method that uses a list of gestures as a password in the previous study. In this paper, we introduced support vector machines (SVM) for improvement of the method of identifying gestures. A series of experiments was carried out to evaluate the performance of the SVM based method as a gesture classifier and we also discussed its security.</description><identifier>ISSN: 1433-5298</identifier><identifier>EISSN: 1614-7456</identifier><identifier>DOI: 10.1007/s10015-017-0404-z</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Artificial Intelligence ; Authentication ; Computation by Abstract Devices ; Computer Science ; Control ; Electronic devices ; Mechatronics ; Muscles ; Original Article ; Robotics ; Security management ; Skin ; Smartphones ; Support vector machines</subject><ispartof>Artificial life and robotics, 2018-03, Vol.23 (1), p.87-93</ispartof><rights>ISAROB 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-1d40a1611a91275d4f6e104fb73307ccfc9a9a6e285aabcb16fee1166c7a45413</citedby><cites>FETCH-LOGICAL-c382t-1d40a1611a91275d4f6e104fb73307ccfc9a9a6e285aabcb16fee1166c7a45413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yamaba, Hisaaki</creatorcontrib><creatorcontrib>Kurogi, Tokiyoshi</creatorcontrib><creatorcontrib>Aburada, Kentaro</creatorcontrib><creatorcontrib>Kubota, Shin-Ichiro</creatorcontrib><creatorcontrib>Katayama, Tetsuro</creatorcontrib><creatorcontrib>Park, Mirang</creatorcontrib><creatorcontrib>Okazaki, Naonobu</creatorcontrib><title>On applying support vector machines to a user authentication method using surface electromyogram signals</title><title>Artificial life and robotics</title><addtitle>Artif Life Robotics</addtitle><description>At present, mobile devices such as tablet-type PCs and smart phones have widely penetrated into our daily lives. Therefore, an authentication method that prevents shoulder surfing is needed. We are investigating a new user authentication method for mobile devices that uses surface electromyogram (s-EMG) signals, not screen touching. The s-EMG signals, which are detected over the skin surface, are generated by the electrical activity of muscle fibers during contraction. Muscle movement can be differentiated by analyzing the s-EMG. Taking advantage of the characteristics, we proposed a method that uses a list of gestures as a password in the previous study. In this paper, we introduced support vector machines (SVM) for improvement of the method of identifying gestures. A series of experiments was carried out to evaluate the performance of the SVM based method as a gesture classifier and we also discussed its security.</description><subject>Artificial Intelligence</subject><subject>Authentication</subject><subject>Computation by Abstract Devices</subject><subject>Computer Science</subject><subject>Control</subject><subject>Electronic devices</subject><subject>Mechatronics</subject><subject>Muscles</subject><subject>Original Article</subject><subject>Robotics</subject><subject>Security management</subject><subject>Skin</subject><subject>Smartphones</subject><subject>Support vector machines</subject><issn>1433-5298</issn><issn>1614-7456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7-Ad4CnqOZNk3aoyx-wcJe9Bxms-nHsm1qkgrrX2-WCp68zBuY9xsej5Bb4PfAuXoIaULBOCjGBRfs-4wsQIJgShTyPO0iz1mRVeUluQphz7lQXOYL0m4GiuN4OHZDQ8M0js5H-mVNdJ72aNpusIFGR5FOwXqKU2ztEDuDsXMD7W1s3S6dZtrXaCy1h4R71x9d47GnoWsGPIRrclEnsTe_uiQfz0_vq1e23ry8rR7XzORlFhnsBMcUHLCCTBU7UUsLXNRbledcGVObCiuUNisLxK3ZgqytBZDSKBSFgHxJ7ua_o3efkw1R793kTwl0xnnJASqVJRfMLuNdCN7WevRdj_6ogetToXouVKdC9alQ_Z2YbGZC8g6N9X-f_4d-AJ-heyc</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Yamaba, Hisaaki</creator><creator>Kurogi, Tokiyoshi</creator><creator>Aburada, Kentaro</creator><creator>Kubota, Shin-Ichiro</creator><creator>Katayama, Tetsuro</creator><creator>Park, Mirang</creator><creator>Okazaki, Naonobu</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180301</creationdate><title>On applying support vector machines to a user authentication method using surface electromyogram signals</title><author>Yamaba, Hisaaki ; Kurogi, Tokiyoshi ; Aburada, Kentaro ; Kubota, Shin-Ichiro ; Katayama, Tetsuro ; Park, Mirang ; Okazaki, Naonobu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-1d40a1611a91275d4f6e104fb73307ccfc9a9a6e285aabcb16fee1166c7a45413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial Intelligence</topic><topic>Authentication</topic><topic>Computation by Abstract Devices</topic><topic>Computer Science</topic><topic>Control</topic><topic>Electronic devices</topic><topic>Mechatronics</topic><topic>Muscles</topic><topic>Original Article</topic><topic>Robotics</topic><topic>Security management</topic><topic>Skin</topic><topic>Smartphones</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamaba, Hisaaki</creatorcontrib><creatorcontrib>Kurogi, Tokiyoshi</creatorcontrib><creatorcontrib>Aburada, Kentaro</creatorcontrib><creatorcontrib>Kubota, Shin-Ichiro</creatorcontrib><creatorcontrib>Katayama, Tetsuro</creatorcontrib><creatorcontrib>Park, Mirang</creatorcontrib><creatorcontrib>Okazaki, Naonobu</creatorcontrib><collection>CrossRef</collection><jtitle>Artificial life and robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamaba, Hisaaki</au><au>Kurogi, Tokiyoshi</au><au>Aburada, Kentaro</au><au>Kubota, Shin-Ichiro</au><au>Katayama, Tetsuro</au><au>Park, Mirang</au><au>Okazaki, Naonobu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On applying support vector machines to a user authentication method using surface electromyogram signals</atitle><jtitle>Artificial life and robotics</jtitle><stitle>Artif Life Robotics</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>23</volume><issue>1</issue><spage>87</spage><epage>93</epage><pages>87-93</pages><issn>1433-5298</issn><eissn>1614-7456</eissn><abstract>At present, mobile devices such as tablet-type PCs and smart phones have widely penetrated into our daily lives. Therefore, an authentication method that prevents shoulder surfing is needed. We are investigating a new user authentication method for mobile devices that uses surface electromyogram (s-EMG) signals, not screen touching. The s-EMG signals, which are detected over the skin surface, are generated by the electrical activity of muscle fibers during contraction. Muscle movement can be differentiated by analyzing the s-EMG. Taking advantage of the characteristics, we proposed a method that uses a list of gestures as a password in the previous study. In this paper, we introduced support vector machines (SVM) for improvement of the method of identifying gestures. A series of experiments was carried out to evaluate the performance of the SVM based method as a gesture classifier and we also discussed its security.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10015-017-0404-z</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-5298 |
ispartof | Artificial life and robotics, 2018-03, Vol.23 (1), p.87-93 |
issn | 1433-5298 1614-7456 |
language | eng |
recordid | cdi_proquest_journals_2008011972 |
source | Springer Nature |
subjects | Artificial Intelligence Authentication Computation by Abstract Devices Computer Science Control Electronic devices Mechatronics Muscles Original Article Robotics Security management Skin Smartphones Support vector machines |
title | On applying support vector machines to a user authentication method using surface electromyogram signals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A13%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20applying%20support%20vector%20machines%20to%20a%20user%20authentication%20method%20using%20surface%20electromyogram%20signals&rft.jtitle=Artificial%20life%20and%20robotics&rft.au=Yamaba,%20Hisaaki&rft.date=2018-03-01&rft.volume=23&rft.issue=1&rft.spage=87&rft.epage=93&rft.pages=87-93&rft.issn=1433-5298&rft.eissn=1614-7456&rft_id=info:doi/10.1007/s10015-017-0404-z&rft_dat=%3Cproquest_cross%3E2008011972%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-1d40a1611a91275d4f6e104fb73307ccfc9a9a6e285aabcb16fee1166c7a45413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2008011972&rft_id=info:pmid/&rfr_iscdi=true |