Loading…

On applying support vector machines to a user authentication method using surface electromyogram signals

At present, mobile devices such as tablet-type PCs and smart phones have widely penetrated into our daily lives. Therefore, an authentication method that prevents shoulder surfing is needed. We are investigating a new user authentication method for mobile devices that uses surface electromyogram (s-...

Full description

Saved in:
Bibliographic Details
Published in:Artificial life and robotics 2018-03, Vol.23 (1), p.87-93
Main Authors: Yamaba, Hisaaki, Kurogi, Tokiyoshi, Aburada, Kentaro, Kubota, Shin-Ichiro, Katayama, Tetsuro, Park, Mirang, Okazaki, Naonobu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-1d40a1611a91275d4f6e104fb73307ccfc9a9a6e285aabcb16fee1166c7a45413
cites cdi_FETCH-LOGICAL-c382t-1d40a1611a91275d4f6e104fb73307ccfc9a9a6e285aabcb16fee1166c7a45413
container_end_page 93
container_issue 1
container_start_page 87
container_title Artificial life and robotics
container_volume 23
creator Yamaba, Hisaaki
Kurogi, Tokiyoshi
Aburada, Kentaro
Kubota, Shin-Ichiro
Katayama, Tetsuro
Park, Mirang
Okazaki, Naonobu
description At present, mobile devices such as tablet-type PCs and smart phones have widely penetrated into our daily lives. Therefore, an authentication method that prevents shoulder surfing is needed. We are investigating a new user authentication method for mobile devices that uses surface electromyogram (s-EMG) signals, not screen touching. The s-EMG signals, which are detected over the skin surface, are generated by the electrical activity of muscle fibers during contraction. Muscle movement can be differentiated by analyzing the s-EMG. Taking advantage of the characteristics, we proposed a method that uses a list of gestures as a password in the previous study. In this paper, we introduced support vector machines (SVM) for improvement of the method of identifying gestures. A series of experiments was carried out to evaluate the performance of the SVM based method as a gesture classifier and we also discussed its security.
doi_str_mv 10.1007/s10015-017-0404-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2008011972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2008011972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-1d40a1611a91275d4f6e104fb73307ccfc9a9a6e285aabcb16fee1166c7a45413</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7-Ad4CnqOZNk3aoyx-wcJe9Bxms-nHsm1qkgrrX2-WCp68zBuY9xsej5Bb4PfAuXoIaULBOCjGBRfs-4wsQIJgShTyPO0iz1mRVeUluQphz7lQXOYL0m4GiuN4OHZDQ8M0js5H-mVNdJ72aNpusIFGR5FOwXqKU2ztEDuDsXMD7W1s3S6dZtrXaCy1h4R71x9d47GnoWsGPIRrclEnsTe_uiQfz0_vq1e23ry8rR7XzORlFhnsBMcUHLCCTBU7UUsLXNRbledcGVObCiuUNisLxK3ZgqytBZDSKBSFgHxJ7ua_o3efkw1R793kTwl0xnnJASqVJRfMLuNdCN7WevRdj_6ogetToXouVKdC9alQ_Z2YbGZC8g6N9X-f_4d-AJ-heyc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2008011972</pqid></control><display><type>article</type><title>On applying support vector machines to a user authentication method using surface electromyogram signals</title><source>Springer Nature</source><creator>Yamaba, Hisaaki ; Kurogi, Tokiyoshi ; Aburada, Kentaro ; Kubota, Shin-Ichiro ; Katayama, Tetsuro ; Park, Mirang ; Okazaki, Naonobu</creator><creatorcontrib>Yamaba, Hisaaki ; Kurogi, Tokiyoshi ; Aburada, Kentaro ; Kubota, Shin-Ichiro ; Katayama, Tetsuro ; Park, Mirang ; Okazaki, Naonobu</creatorcontrib><description>At present, mobile devices such as tablet-type PCs and smart phones have widely penetrated into our daily lives. Therefore, an authentication method that prevents shoulder surfing is needed. We are investigating a new user authentication method for mobile devices that uses surface electromyogram (s-EMG) signals, not screen touching. The s-EMG signals, which are detected over the skin surface, are generated by the electrical activity of muscle fibers during contraction. Muscle movement can be differentiated by analyzing the s-EMG. Taking advantage of the characteristics, we proposed a method that uses a list of gestures as a password in the previous study. In this paper, we introduced support vector machines (SVM) for improvement of the method of identifying gestures. A series of experiments was carried out to evaluate the performance of the SVM based method as a gesture classifier and we also discussed its security.</description><identifier>ISSN: 1433-5298</identifier><identifier>EISSN: 1614-7456</identifier><identifier>DOI: 10.1007/s10015-017-0404-z</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Artificial Intelligence ; Authentication ; Computation by Abstract Devices ; Computer Science ; Control ; Electronic devices ; Mechatronics ; Muscles ; Original Article ; Robotics ; Security management ; Skin ; Smartphones ; Support vector machines</subject><ispartof>Artificial life and robotics, 2018-03, Vol.23 (1), p.87-93</ispartof><rights>ISAROB 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-1d40a1611a91275d4f6e104fb73307ccfc9a9a6e285aabcb16fee1166c7a45413</citedby><cites>FETCH-LOGICAL-c382t-1d40a1611a91275d4f6e104fb73307ccfc9a9a6e285aabcb16fee1166c7a45413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yamaba, Hisaaki</creatorcontrib><creatorcontrib>Kurogi, Tokiyoshi</creatorcontrib><creatorcontrib>Aburada, Kentaro</creatorcontrib><creatorcontrib>Kubota, Shin-Ichiro</creatorcontrib><creatorcontrib>Katayama, Tetsuro</creatorcontrib><creatorcontrib>Park, Mirang</creatorcontrib><creatorcontrib>Okazaki, Naonobu</creatorcontrib><title>On applying support vector machines to a user authentication method using surface electromyogram signals</title><title>Artificial life and robotics</title><addtitle>Artif Life Robotics</addtitle><description>At present, mobile devices such as tablet-type PCs and smart phones have widely penetrated into our daily lives. Therefore, an authentication method that prevents shoulder surfing is needed. We are investigating a new user authentication method for mobile devices that uses surface electromyogram (s-EMG) signals, not screen touching. The s-EMG signals, which are detected over the skin surface, are generated by the electrical activity of muscle fibers during contraction. Muscle movement can be differentiated by analyzing the s-EMG. Taking advantage of the characteristics, we proposed a method that uses a list of gestures as a password in the previous study. In this paper, we introduced support vector machines (SVM) for improvement of the method of identifying gestures. A series of experiments was carried out to evaluate the performance of the SVM based method as a gesture classifier and we also discussed its security.</description><subject>Artificial Intelligence</subject><subject>Authentication</subject><subject>Computation by Abstract Devices</subject><subject>Computer Science</subject><subject>Control</subject><subject>Electronic devices</subject><subject>Mechatronics</subject><subject>Muscles</subject><subject>Original Article</subject><subject>Robotics</subject><subject>Security management</subject><subject>Skin</subject><subject>Smartphones</subject><subject>Support vector machines</subject><issn>1433-5298</issn><issn>1614-7456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7-Ad4CnqOZNk3aoyx-wcJe9Bxms-nHsm1qkgrrX2-WCp68zBuY9xsej5Bb4PfAuXoIaULBOCjGBRfs-4wsQIJgShTyPO0iz1mRVeUluQphz7lQXOYL0m4GiuN4OHZDQ8M0js5H-mVNdJ72aNpusIFGR5FOwXqKU2ztEDuDsXMD7W1s3S6dZtrXaCy1h4R71x9d47GnoWsGPIRrclEnsTe_uiQfz0_vq1e23ry8rR7XzORlFhnsBMcUHLCCTBU7UUsLXNRbledcGVObCiuUNisLxK3ZgqytBZDSKBSFgHxJ7ua_o3efkw1R793kTwl0xnnJASqVJRfMLuNdCN7WevRdj_6ogetToXouVKdC9alQ_Z2YbGZC8g6N9X-f_4d-AJ-heyc</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Yamaba, Hisaaki</creator><creator>Kurogi, Tokiyoshi</creator><creator>Aburada, Kentaro</creator><creator>Kubota, Shin-Ichiro</creator><creator>Katayama, Tetsuro</creator><creator>Park, Mirang</creator><creator>Okazaki, Naonobu</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180301</creationdate><title>On applying support vector machines to a user authentication method using surface electromyogram signals</title><author>Yamaba, Hisaaki ; Kurogi, Tokiyoshi ; Aburada, Kentaro ; Kubota, Shin-Ichiro ; Katayama, Tetsuro ; Park, Mirang ; Okazaki, Naonobu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-1d40a1611a91275d4f6e104fb73307ccfc9a9a6e285aabcb16fee1166c7a45413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial Intelligence</topic><topic>Authentication</topic><topic>Computation by Abstract Devices</topic><topic>Computer Science</topic><topic>Control</topic><topic>Electronic devices</topic><topic>Mechatronics</topic><topic>Muscles</topic><topic>Original Article</topic><topic>Robotics</topic><topic>Security management</topic><topic>Skin</topic><topic>Smartphones</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamaba, Hisaaki</creatorcontrib><creatorcontrib>Kurogi, Tokiyoshi</creatorcontrib><creatorcontrib>Aburada, Kentaro</creatorcontrib><creatorcontrib>Kubota, Shin-Ichiro</creatorcontrib><creatorcontrib>Katayama, Tetsuro</creatorcontrib><creatorcontrib>Park, Mirang</creatorcontrib><creatorcontrib>Okazaki, Naonobu</creatorcontrib><collection>CrossRef</collection><jtitle>Artificial life and robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamaba, Hisaaki</au><au>Kurogi, Tokiyoshi</au><au>Aburada, Kentaro</au><au>Kubota, Shin-Ichiro</au><au>Katayama, Tetsuro</au><au>Park, Mirang</au><au>Okazaki, Naonobu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On applying support vector machines to a user authentication method using surface electromyogram signals</atitle><jtitle>Artificial life and robotics</jtitle><stitle>Artif Life Robotics</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>23</volume><issue>1</issue><spage>87</spage><epage>93</epage><pages>87-93</pages><issn>1433-5298</issn><eissn>1614-7456</eissn><abstract>At present, mobile devices such as tablet-type PCs and smart phones have widely penetrated into our daily lives. Therefore, an authentication method that prevents shoulder surfing is needed. We are investigating a new user authentication method for mobile devices that uses surface electromyogram (s-EMG) signals, not screen touching. The s-EMG signals, which are detected over the skin surface, are generated by the electrical activity of muscle fibers during contraction. Muscle movement can be differentiated by analyzing the s-EMG. Taking advantage of the characteristics, we proposed a method that uses a list of gestures as a password in the previous study. In this paper, we introduced support vector machines (SVM) for improvement of the method of identifying gestures. A series of experiments was carried out to evaluate the performance of the SVM based method as a gesture classifier and we also discussed its security.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10015-017-0404-z</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1433-5298
ispartof Artificial life and robotics, 2018-03, Vol.23 (1), p.87-93
issn 1433-5298
1614-7456
language eng
recordid cdi_proquest_journals_2008011972
source Springer Nature
subjects Artificial Intelligence
Authentication
Computation by Abstract Devices
Computer Science
Control
Electronic devices
Mechatronics
Muscles
Original Article
Robotics
Security management
Skin
Smartphones
Support vector machines
title On applying support vector machines to a user authentication method using surface electromyogram signals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A13%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20applying%20support%20vector%20machines%20to%20a%20user%20authentication%20method%20using%20surface%20electromyogram%20signals&rft.jtitle=Artificial%20life%20and%20robotics&rft.au=Yamaba,%20Hisaaki&rft.date=2018-03-01&rft.volume=23&rft.issue=1&rft.spage=87&rft.epage=93&rft.pages=87-93&rft.issn=1433-5298&rft.eissn=1614-7456&rft_id=info:doi/10.1007/s10015-017-0404-z&rft_dat=%3Cproquest_cross%3E2008011972%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-1d40a1611a91275d4f6e104fb73307ccfc9a9a6e285aabcb16fee1166c7a45413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2008011972&rft_id=info:pmid/&rfr_iscdi=true