Loading…

Salient object detection method using random graph

In this paper, a bottom-up salient object detection method is proposed by modeling image as a random graph. The proposed method starts with portioning input image into superpixels and extracting color and spatial features for each superpixel. Then, a complete graph is constructed by employing superp...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia tools and applications 2018-10, Vol.77 (19), p.24681-24699
Main Authors: Nouri, Fatemeh, Kazemi, Kamran, Danyali, Habibollah
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a bottom-up salient object detection method is proposed by modeling image as a random graph. The proposed method starts with portioning input image into superpixels and extracting color and spatial features for each superpixel. Then, a complete graph is constructed by employing superpixels as nodes. A high edge weight is assigned into a pair of superpixels if they have high similarity. Next, a random walk prior on nodes is assumed to generate the probability distribution on edges. On the other hand, a complete directed graph is created that each edge weight represents the probability for transmitting random walker from current node to next node. By considering a threshold and eliminating edges with higher probability than the threshold, a random graph is created to model input image. The inbound degree vector of a random graph is computed to determine the most salient nodes (regions). Finally, a propagation technique is used to form saliency map. Experimental results on two challenging datasets: MSRA10K and SED2 demonstrate the efficiency of the proposed unsupervised RG method in comparison with the state-of-the-art unsupervised methods.
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-018-5668-3