Loading…
Catalyst-free chemoselective conjugate addition and reduction of α,β-unsaturated carbonyl compounds via a controllable boration/protodeboronation cascade pathway
A novel, efficient transition-metal-free and controllable boration/protodeboronation strategy has been developed for the chemoselective conjugate addition and 1,4-reduction of α,β-unsaturated carbonyl compounds. Without any metal-catalyst or base, a series of β-boration products of α,β-unsaturated c...
Saved in:
Published in: | Green chemistry : an international journal and green chemistry resource : GC 2018, Vol.20 (1), p.255-260 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel, efficient transition-metal-free and controllable boration/protodeboronation strategy has been developed for the chemoselective conjugate addition and 1,4-reduction of α,β-unsaturated carbonyl compounds. Without any metal-catalyst or base, a series of β-boration products of α,β-unsaturated carbonyl compounds was easily obtained in moderate to excellent yields in a mixed solvent of ethanol and water. The presence of a catalytic amount of Cs
2
CO
3
can effectively induce further protodeboronation reaction towards 1,4-reduction products at higher reaction temperature. Therefore, by slightly changing the reaction conditions, the boration or reduction products of α,β-unsaturated carbonyl compounds can be controllably obtained. Mechanistic studies revealed that Cs
2
CO
3
played the key role in activating the protodeboronation step. This transition-metal-catalyst-free and product controllable method provides a useful and eco-friendly tool for the highly chemoselective preparation of the β-boration products and 1,4-reduction products of α,β-unsaturated carbonyl compounds. |
---|---|
ISSN: | 1463-9262 1463-9270 |
DOI: | 10.1039/C7GC02863F |