Loading…
GRAZING BEHAVIOUR OF DAIRY COWS AND BODY CONDITION SCORE ASSOCIATED WITH SWARD CHARACTERISTICS OF FOUR PASTURE TYPES
The objectives were to assess the following: (1) the relationship between sward height and chemical composition of four pasture types in association with grazing behaviour and body condition score (BCS) of dairy cows, and (2) the possibility of developing predictive equations of the nutrient intake...
Saved in:
Published in: | Experimental agriculture 2018-04, Vol.54 (2), p.214-226 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The objectives were to assess the following: (1) the relationship between sward height and chemical composition of four pasture types in association with grazing behaviour and body condition score (BCS) of dairy cows, and (2) the possibility of developing predictive equations of the nutrient intake and grazing behaviour within a continued grazing system. Pasture type had a significant (p < 0.01) effect on nutrient supply from January to June for all pastures investigated. Ryegrass–white clover pasture (RW) had the highest metabolizable protein and metabolizable energy, followed by kikuyu pasture (KP), which was significantly (p < 0.001) higher than native pastures 1 and 2 (NP1 and NP2). The highest values for effective grazing time, bite rate and BCS were found when dairy cows grazed RW followed by KP, NP2 and NP1. The results suggested that pasture type and sward height influenced grazing behaviour and BCS of dairy cows during the dry season. In the same vein, RW showed higher effective grazing time, bite rate, nutrient intake and BCS than the other three pastures suggesting that RW pastures that appear to be more expensive than native pastures could result in superior cow performance. |
---|---|
ISSN: | 0014-4797 1469-4441 |
DOI: | 10.1017/S001447971600020X |