Loading…

MorphoNoC: Exploring the design space of a configurable hybrid NoC using nanophotonics

As diminishing feature sizes drive down the energy for computations, the power budget for on-chip communication is steadily rising. Furthermore, the increasing number of cores is placing a huge performance burden on the network-on-chip (NoC) infrastructure. While NoCs are designed as regular archite...

Full description

Saved in:
Bibliographic Details
Published in:Microprocessors and microsystems 2017-05, Vol.50, p.113-126
Main Authors: Narayana, Vikram K., Sun, Shuai, Badawy, Abdel-Hameed A., Sorger, Volker J., El-Ghazawi, Tarek
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As diminishing feature sizes drive down the energy for computations, the power budget for on-chip communication is steadily rising. Furthermore, the increasing number of cores is placing a huge performance burden on the network-on-chip (NoC) infrastructure. While NoCs are designed as regular architectures that allow scaling to hundreds of cores, the lack of a flexible topology gives rise to higher latencies, lower throughput, and increased energy costs. In this paper, we explore MorphoNoCs - scalable, configurable, hybrid NoCs obtained by extending regular electrical networks with configurable nanophotonic links. In order to design MorphoNoCs, we first carry out a detailed study of the design space for Multi-Write Multi-Read (MWMR) nanophotonics links. After identifying optimum design points, we then discuss the router architecture for deploying them in hybrid electronic-photonic NoCs. We then study the design space at the network level, by varying the waveguide lengths and the number of hybrid routers. This affords us to carry out energy-latency trade-offs. For our evaluations, we adopt traces from synthetic benchmarks as well as the NAS Parallel Benchmark suite. Our results indicate that MorphoNoCs can achieve latency improvements of up to 3.0× or energy improvements of up to 1.37× over the base electronic network.
ISSN:0141-9331
1872-9436
DOI:10.1016/j.micpro.2017.03.006