Loading…

Identification of T Cell-Signaling Pathways That Stimulate Latent HIV in Primary Cells

Eradication of HIV infection depends on the elimination of a small, but stable population of latently infected T cells. After the discontinuation of therapy, activation of latent virus can rekindle infection. To purge this reservoir, it is necessary to define cellular signaling pathways that lead to...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2003-10, Vol.100 (22), p.12955-12960
Main Authors: Brooks, David G., Arlen, Philip A., Gao, Lianying, Christina M. R. Kitchen, Zack, Jerome A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Eradication of HIV infection depends on the elimination of a small, but stable population of latently infected T cells. After the discontinuation of therapy, activation of latent virus can rekindle infection. To purge this reservoir, it is necessary to define cellular signaling pathways that lead to activation of latent HIV. We used the SCID-hu (Thy/Liv) mouse model of HIV latency to analyze a broad array of T cell-signaling pathways and show in primary, quiescent cells that viral induction depends on the activation of two primary intracellular signaling pathways, protein kinase C or nuclear factor of activated T cells (NF-AT). In contrast, inhibition or activation of other important T cell stimulatory pathways (such as mitogen-activated protein kinase, calcium flux, or histone deacetylation) do not significantly induce virus expression. We found that the activation of NF-κB is critical to viral reactivation; however, all pathways that stimulate NF-κB do not reactivate latent virus. Our studies further show that inhibition of NF-κB does not prevent activation of HIV by NF-AT, indicating that these pathways can function independently to activate the HIV LTR. Thus, we define several molecular pathways that trigger HIV reactivation from latency and provide evidence that latent HIV infection is maintained by the functional lack of particular transcription factors in quiescent cells.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2233345100