Loading…

Quantitative characterization of cell synchronization in yeast

Metabolic oscillations in baker's yeast serve as a model system for synchronization of biochemical oscillations. Despite widespread interest, the complexity of the phenomenon has been an obstacle for a quantitative understanding of the cell synchronization process. In particular, when two yeast...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2007-07, Vol.104 (31), p.12732-12736
Main Authors: Danø, Sune, Madsen, Mads Find, Sørensen, Preben Graae
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c620t-c6dfdbdf65cead56292fb97b0dff14509d1449135464e66ff1a7c6e1535bda473
cites cdi_FETCH-LOGICAL-c620t-c6dfdbdf65cead56292fb97b0dff14509d1449135464e66ff1a7c6e1535bda473
container_end_page 12736
container_issue 31
container_start_page 12732
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Danø, Sune
Madsen, Mads Find
Sørensen, Preben Graae
description Metabolic oscillations in baker's yeast serve as a model system for synchronization of biochemical oscillations. Despite widespread interest, the complexity of the phenomenon has been an obstacle for a quantitative understanding of the cell synchronization process. In particular, when two yeast cell populations oscillating 180° out of phase are mixed, it appears as if the synchronization dynamics is too fast to be explained. We have probed the synchronization dynamics by forcing experiments in an open-flow reactor, and we find that acetaldehyde has a very strong synchronization effect that can account quantitatively for the classical mixing experiment. The fast synchronization dynamics is explained by a general synchronization mechanism, which is dominated by a fast amplitude response as opposed to the expected slow phase change. We also show that glucose can mediate this kind of synchronization, provided that the glucose transporter is not saturated. This makes the phenomenon potentially relevant for a broad range of cell types.
doi_str_mv 10.1073/pnas.0702560104
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201311343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25436373</jstor_id><sourcerecordid>25436373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-c6dfdbdf65cead56292fb97b0dff14509d1449135464e66ff1a7c6e1535bda473</originalsourceid><addsrcrecordid>eNqFkc2LFDEQxYMo7rh69qQ2HgQPs1uVz85lQRa_YEFE9xzS3clODz2dMUkvjn-9aWbcUS97SaDqV4969Qh5jnCGoNj5drTpDBRQIQGBPyALBI1LyTU8JAsAqpY1p_yEPElpDQBa1PCYnKCSggrUC3LxdbJj7rPN_a2r2pWNts0u9r9KIYxV8FXrhqFKu7FdxTD-qfdjtXM25afkkbdDcs8O_ym5_vD---Wn5dWXj58v310tW0khl7fzXdN5KVpnOyGppr7RqoHOe-QCdIeca2SCS-6kLEWrWulQMNF0lit2Si72utup2biudWOOdjDb2G9s3Jlge_NvZ-xX5ibcGtRMFZUi8OYgEMOPyaVsNn2ardnRhSkZWSMKzut7QVpuCjXnBXz9H7gOUxzLFQqDDJFxVqDzPdTGkFJ0_m5lBDMnaOYEzTHBMvHyb6dH_hBZAd4egHnyKMcNQ4NUMWr8NAzZ_cyFre5hC_Jij6xTDvGOoYIzydTs4NW-720w9ib2yVx_mw0CKM01Q_YbKJPDgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201311343</pqid></control><display><type>article</type><title>Quantitative characterization of cell synchronization in yeast</title><source>PubMed Central(OpenAccess)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Danø, Sune ; Madsen, Mads Find ; Sørensen, Preben Graae</creator><creatorcontrib>Danø, Sune ; Madsen, Mads Find ; Sørensen, Preben Graae</creatorcontrib><description>Metabolic oscillations in baker's yeast serve as a model system for synchronization of biochemical oscillations. Despite widespread interest, the complexity of the phenomenon has been an obstacle for a quantitative understanding of the cell synchronization process. In particular, when two yeast cell populations oscillating 180° out of phase are mixed, it appears as if the synchronization dynamics is too fast to be explained. We have probed the synchronization dynamics by forcing experiments in an open-flow reactor, and we find that acetaldehyde has a very strong synchronization effect that can account quantitatively for the classical mixing experiment. The fast synchronization dynamics is explained by a general synchronization mechanism, which is dominated by a fast amplitude response as opposed to the expected slow phase change. We also show that glucose can mediate this kind of synchronization, provided that the glucose transporter is not saturated. This makes the phenomenon potentially relevant for a broad range of cell types.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0702560104</identifier><identifier>PMID: 17652519</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>acetaldehyde ; Acetaldehyde - pharmacology ; Biological Clocks - physiology ; Biological Sciences ; Biophysics ; bioreactors ; cell culture ; cell synchronization ; Cells ; continuous-flow stirred-tank reactor ; Cyanides ; Facilitative glucose transport proteins ; Fluorescence ; glucose ; Glucose - metabolism ; Glycolysis ; microbial growth ; microbial physiology ; Multiphase flow ; nutrient availability ; Oscillators ; Phase shift ; Resonance ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - drug effects ; Synchronizers ; Temperature ; Yeast ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-07, Vol.104 (31), p.12732-12736</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 31, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-c6dfdbdf65cead56292fb97b0dff14509d1449135464e66ff1a7c6e1535bda473</citedby><cites>FETCH-LOGICAL-c620t-c6dfdbdf65cead56292fb97b0dff14509d1449135464e66ff1a7c6e1535bda473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/31.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25436373$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25436373$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17652519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Danø, Sune</creatorcontrib><creatorcontrib>Madsen, Mads Find</creatorcontrib><creatorcontrib>Sørensen, Preben Graae</creatorcontrib><title>Quantitative characterization of cell synchronization in yeast</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Metabolic oscillations in baker's yeast serve as a model system for synchronization of biochemical oscillations. Despite widespread interest, the complexity of the phenomenon has been an obstacle for a quantitative understanding of the cell synchronization process. In particular, when two yeast cell populations oscillating 180° out of phase are mixed, it appears as if the synchronization dynamics is too fast to be explained. We have probed the synchronization dynamics by forcing experiments in an open-flow reactor, and we find that acetaldehyde has a very strong synchronization effect that can account quantitatively for the classical mixing experiment. The fast synchronization dynamics is explained by a general synchronization mechanism, which is dominated by a fast amplitude response as opposed to the expected slow phase change. We also show that glucose can mediate this kind of synchronization, provided that the glucose transporter is not saturated. This makes the phenomenon potentially relevant for a broad range of cell types.</description><subject>acetaldehyde</subject><subject>Acetaldehyde - pharmacology</subject><subject>Biological Clocks - physiology</subject><subject>Biological Sciences</subject><subject>Biophysics</subject><subject>bioreactors</subject><subject>cell culture</subject><subject>cell synchronization</subject><subject>Cells</subject><subject>continuous-flow stirred-tank reactor</subject><subject>Cyanides</subject><subject>Facilitative glucose transport proteins</subject><subject>Fluorescence</subject><subject>glucose</subject><subject>Glucose - metabolism</subject><subject>Glycolysis</subject><subject>microbial growth</subject><subject>microbial physiology</subject><subject>Multiphase flow</subject><subject>nutrient availability</subject><subject>Oscillators</subject><subject>Phase shift</subject><subject>Resonance</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Synchronizers</subject><subject>Temperature</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkc2LFDEQxYMo7rh69qQ2HgQPs1uVz85lQRa_YEFE9xzS3clODz2dMUkvjn-9aWbcUS97SaDqV4969Qh5jnCGoNj5drTpDBRQIQGBPyALBI1LyTU8JAsAqpY1p_yEPElpDQBa1PCYnKCSggrUC3LxdbJj7rPN_a2r2pWNts0u9r9KIYxV8FXrhqFKu7FdxTD-qfdjtXM25afkkbdDcs8O_ym5_vD---Wn5dWXj58v310tW0khl7fzXdN5KVpnOyGppr7RqoHOe-QCdIeca2SCS-6kLEWrWulQMNF0lit2Si72utup2biudWOOdjDb2G9s3Jlge_NvZ-xX5ibcGtRMFZUi8OYgEMOPyaVsNn2ardnRhSkZWSMKzut7QVpuCjXnBXz9H7gOUxzLFQqDDJFxVqDzPdTGkFJ0_m5lBDMnaOYEzTHBMvHyb6dH_hBZAd4egHnyKMcNQ4NUMWr8NAzZ_cyFre5hC_Jij6xTDvGOoYIzydTs4NW-720w9ib2yVx_mw0CKM01Q_YbKJPDgA</recordid><startdate>20070731</startdate><enddate>20070731</enddate><creator>Danø, Sune</creator><creator>Madsen, Mads Find</creator><creator>Sørensen, Preben Graae</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070731</creationdate><title>Quantitative characterization of cell synchronization in yeast</title><author>Danø, Sune ; Madsen, Mads Find ; Sørensen, Preben Graae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-c6dfdbdf65cead56292fb97b0dff14509d1449135464e66ff1a7c6e1535bda473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>acetaldehyde</topic><topic>Acetaldehyde - pharmacology</topic><topic>Biological Clocks - physiology</topic><topic>Biological Sciences</topic><topic>Biophysics</topic><topic>bioreactors</topic><topic>cell culture</topic><topic>cell synchronization</topic><topic>Cells</topic><topic>continuous-flow stirred-tank reactor</topic><topic>Cyanides</topic><topic>Facilitative glucose transport proteins</topic><topic>Fluorescence</topic><topic>glucose</topic><topic>Glucose - metabolism</topic><topic>Glycolysis</topic><topic>microbial growth</topic><topic>microbial physiology</topic><topic>Multiphase flow</topic><topic>nutrient availability</topic><topic>Oscillators</topic><topic>Phase shift</topic><topic>Resonance</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Synchronizers</topic><topic>Temperature</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danø, Sune</creatorcontrib><creatorcontrib>Madsen, Mads Find</creatorcontrib><creatorcontrib>Sørensen, Preben Graae</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danø, Sune</au><au>Madsen, Mads Find</au><au>Sørensen, Preben Graae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative characterization of cell synchronization in yeast</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-07-31</date><risdate>2007</risdate><volume>104</volume><issue>31</issue><spage>12732</spage><epage>12736</epage><pages>12732-12736</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Metabolic oscillations in baker's yeast serve as a model system for synchronization of biochemical oscillations. Despite widespread interest, the complexity of the phenomenon has been an obstacle for a quantitative understanding of the cell synchronization process. In particular, when two yeast cell populations oscillating 180° out of phase are mixed, it appears as if the synchronization dynamics is too fast to be explained. We have probed the synchronization dynamics by forcing experiments in an open-flow reactor, and we find that acetaldehyde has a very strong synchronization effect that can account quantitatively for the classical mixing experiment. The fast synchronization dynamics is explained by a general synchronization mechanism, which is dominated by a fast amplitude response as opposed to the expected slow phase change. We also show that glucose can mediate this kind of synchronization, provided that the glucose transporter is not saturated. This makes the phenomenon potentially relevant for a broad range of cell types.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17652519</pmid><doi>10.1073/pnas.0702560104</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-07, Vol.104 (31), p.12732-12736
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201311343
source PubMed Central(OpenAccess); JSTOR Archival Journals and Primary Sources Collection
subjects acetaldehyde
Acetaldehyde - pharmacology
Biological Clocks - physiology
Biological Sciences
Biophysics
bioreactors
cell culture
cell synchronization
Cells
continuous-flow stirred-tank reactor
Cyanides
Facilitative glucose transport proteins
Fluorescence
glucose
Glucose - metabolism
Glycolysis
microbial growth
microbial physiology
Multiphase flow
nutrient availability
Oscillators
Phase shift
Resonance
Saccharomyces cerevisiae
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - drug effects
Synchronizers
Temperature
Yeast
Yeasts
title Quantitative characterization of cell synchronization in yeast
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20characterization%20of%20cell%20synchronization%20in%20yeast&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Dan%C3%B8,%20Sune&rft.date=2007-07-31&rft.volume=104&rft.issue=31&rft.spage=12732&rft.epage=12736&rft.pages=12732-12736&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0702560104&rft_dat=%3Cjstor_proqu%3E25436373%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c620t-c6dfdbdf65cead56292fb97b0dff14509d1449135464e66ff1a7c6e1535bda473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201311343&rft_id=info:pmid/17652519&rft_jstor_id=25436373&rfr_iscdi=true